
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Praise for Embedded Android

“This is the definitive book for anyone wanting to create a system based on Android. If you
don’t work for Google and you are working with the low-level Android interfaces, you

need this book.”
—Greg Kroah-Hartman, Core Linux Kernel Developer

“If you or your team works on creating custom Android images, devices, or ROM mods,
you want this book! Other than the source code itself, this is the only place where you’ll find
an explanation of how Android works, how the Android build system works, and an overall
view of how Android is put together. I especially like the chapters on the build system and

frameworks (4, 6, and 7), where there are many nuggets of information from the AOSP
source that are hard to reverse-engineer. This book will save you and your team a lot of time.
I wish we had it back when our teams were starting on the Frozen Yogurt version of Android

two years ago. This book is likely to become required reading for new team members
working on Intel Android stacks for the Intel reference phones.”

—Mark Gross, Android/Linux Kernel Architect, Platform System
Integration/Mobile Communications Group/Intel Corporation

“Karim methodically knocks out the many mysteries Android poses to embedded system
developers. This book is a practical treatment of working with the open source software

project on all classes of devices, beyond just consumer phones and tablets. I’m personally
pleased to see so many examples provided on affordable hardware, namely BeagleBone, not

just on emulators.”
—Jason Kridner, Sitara Software Architecture Manager at Texas

Instruments and cofounder of BeagleBoard.org

“This book contains information that previously took hundreds of hours for my engineers
to discover. It is required reading for any new person that is working with Android

on my team.”
—Dr. Mark Micire, Researcher in Space and Mobile Field Robotics,

Carnegie Mellon University

www.it-ebooks.info

http://www.it-ebooks.info/

“Thanks to this book, for the first time embedded system developers have access to an open
and vertically integrated stack that contains everything they need to build robust and high-

performing Linux-based products. Android’s revolutionary execution model transcends
phones and tablets, and its application developer platform is unmatched in the industry for

features and development speed. This book will give developers a valuable resource for
understanding everything between the application layer and the kernel, and how to extend

and change things to create an infinite variety of Androids.”
—Zach Pfeffer, Tech Lead for Linaro’s Android team

“Finally, a book on the Android platform from a systems perspective! There are plenty of
books on creating Android applications, but for too long no single, comprehensive source
for information on Android’s internals. In Embedded Android, Karim has collected a vast

quantity of material that is essential and helpful for Android systems programmers and
integrators (although, to be sure, application developers would benefit from a reading as

well). Karim’s copious examples, references, and explanations are gleaned from his extensive
experience with and analysis of Android. It’s the book I wish I had had when I walked my

own trail of tears learning Android for work at Sony. With this book, I could have saved
myself months learning the ins and outs of Android. No doubt this will be the canonical

reference book for Android system developers for years to come.”
—Tim Bird, Senior Staff Engineer, Sony Network Entertainment,

and Architecture Group Chair, CE Workgroup of the Linux
Foundation

“Karim Yaghmour’s book is an excellent guide for those wishing to get into the burgeoning
field of Android-based embedded projects and products. The book covers the full range
from kernel support through licensing and trademark issues, including information on

running Android systems in “headless” mode as well. This book deserves a place on every
serious embedded Android developer’s bookshelf.”

—Paul E. McKenney, IBM Distinguished Engineer and Linux
Kernel RCU Maintainer

“Although Android is officially designed for mobile and tablet segments, it’s unquestionably
getting considered for many other product segments, like automotive, UI panels like HMI,
wearable gadgets, and so on. This book is highly recommended, as it covers all the essential
fundamentals and concepts that help developers port and develop Android-based solutions

for both mobile and nonmobile product segments.”
—Khasim Syed Mohammed, Lead Engineer, Texas Instruments

www.it-ebooks.info

http://www.it-ebooks.info/

“A great resource not only for embedded Android developers, but also for Android app
developers to learn the wiring below the Java surface.”

—Lars Vogel, CEO, vogella GmbH

“Once again, Karim has hit the nail on the head. If you’re interested in porting Android to
a new device or just interested in the guts of how Android runs on a piece of hardware, this
is the book you’ve been searching for. This book leads you through all of the facets of build-
environment setup, getting the AOSP sources, adding your hardware to the Android sources

and deploying a new Android build to the hardware. It discusses the underpinnings of
Android including the HAL and how to give your custom hardware support within the

Android framework. In short, of all the books on Android, this is the one book that targets
the Android device builder rather than Android application developer or end user. I just
wish this book would have been available when I first got into Android porting. It could

have saved me months of trial and error efforts.”
—Mike Anderson, Chief Scientist, The PTR Group, Inc.

“Embedded Android has been a great resource for our company. It is a must-have when
porting Android to new hardware or integrating new features at a low level. Karim is a great

instructor, and his writing captures his style well.”
—Jim Steele, VP of Engineering, Sensor Platforms

“Embedded Android is a must-read for anyone who wants to seriously work the Android
internals and bring up Android on new platforms. It helps in navigating the extensive AOSP

codebase, and understanding the overall architecture and design of the system.”
—Balwinder Kaur, Senior Member, Technical Staff, Aptina

Imaging

“So you thought you knew about Android internals? Well, think again! Chapter after
chapter, you’ll discover what’s behind the scenes and why Android is not just another
embedded Linux distribution. Get yourself ready for stepping into a whirlpool, ’cause

Embedded Android is a gold mine for anyone looking to do serious hacking on
Google’s OS.”

—Benjamin Zores, Android Platform Architect, Alcatel-Lucent

www.it-ebooks.info

http://www.it-ebooks.info/

“Definitely one of the most valuable and complete resources about the Android system stack.
A must-have for every Android system engineer.”

—Maxime Ripard, Android Lead, Free Electrons

“When I was handed a development board running Linux, and was told to ‘get Android
running on it,’ it was difficult to find much information about how to bring Android up on

a new device. Luckily for me, Embedded Android became available about the same time
that I was beginning development. What a lifesaver! Embedded Android gave me the kick-
start I needed to understand the underpinnings of Android and what I would need to do to
bring Android up on a new piece of hardware. I loved all the details and background, from
the boot sequence to the build system. After having read Embedded Android, I felt I had a

much better grasp of Android and how it interacted with the Linux kernel.”
—Casey Anderson, Embedded Systems Architect, Trendril

www.it-ebooks.info

http://www.it-ebooks.info/

Karim Yaghmour

Embedded Android

www.it-ebooks.info

http://www.it-ebooks.info/

Embedded Android
by Karim Yaghmour

Copyright © 2013 Karim Yaghmour. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Andy Oram and Mike Hendrickson
Production Editor: Kara Ebrahim
Copyeditor: Rebecca Freed
Proofreader: Julie Van Keuren

Indexer: Bob Pfahler
Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Rebecca Demarest

March 2013: First Edition

Revision History for the First Edition:

2013-03-11: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449308292 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Embedded Android, the image of a Moorish wall gecko, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-30829-2

[LSI]

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449308292
http://www.it-ebooks.info/

To Anaïs, Thomas, and Vincent.

May your journeys be filled with the joys of sharing and discovery.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preface. xi

1. Introduction. 1
History 1
Features and Characteristics 2
Development Model 5

Differences From “Classic” Open Source Projects 5
Feature Inclusion, Roadmaps, and New Releases 7

Ecosystem 7
A Word on the Open Handset Alliance 8

Getting “Android” 9
Legal Framework 10

Code Licenses 10
Branding Use 13
Google’s Own Android Apps 15
Alternative App Markets 15
Oracle versus Google 15
Mobile Patent Warfare 16

Hardware and Compliance Requirements 17
Compliance Definition Document 18
Compliance Test Suite 21

Development Setup and Tools 22

2. Internals Primer. 25
App Developer’s View 25

Android Concepts 26
Framework Intro 30
App Development Tools 31
Native Development 32

v

www.it-ebooks.info

http://www.it-ebooks.info/

Overall Architecture 33
Linux Kernel 34

Wakelocks 35
Low-Memory Killer 37
Binder 39
Anonymous Shared Memory (ashmem) 40
Alarm 41
Logger 42
Other Notable Androidisms 45

Hardware Support 46
The Linux Approach 46
Android’s General Approach 47
Loading and Interfacing Methods 49
Device Support Details 51

Native User-Space 52
Filesystem Layout 53
Libraries 54
Init 57
Toolbox 58
Daemons 59
Command-Line Utilities 60

Dalvik and Android’s Java 60
Java Native Interface (JNI) 63

System Services 63
Service Manager and Binder Interaction 68
Calling on Services 70
A Service Example: the Activity Manager 70

Stock AOSP Packages 71
System Startup 73

3. AOSP Jump-Start. 79
Development Host Setup 79
Getting the AOSP 80
Inside the AOSP 86
Build Basics 91

Build System Setup 91
Building Android 94

Running Android 99
Using the Android Debug Bridge (ADB) 101
Mastering the Emulator 105

4. The Build System. 111

vi | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Comparison with Other Build Systems 111
Architecture 113

Configuration 115
envsetup.sh 118
Function Definitions 124
Main Make Recipes 125
Cleaning 127
Module Build Templates 128
Output 132

Build Recipes 134
The Default droid Build 134
Seeing the Build Commands 134
Building the SDK for Linux and Mac OS 135
Building the SDK for Windows 136
Building the CTS 136
Building the NDK 137
Updating the API 138
Building a Single Module 139
Building Out of Tree 140
Building Recursively, In-Tree 142

Basic AOSP Hacks 143
Adding a Device 143
Adding an App 148
Adding an App Overlay 149
Adding a Native Tool or Daemon 150
Adding a Native Library 151

5. Hardware Primer. 155
Typical System Architecture 155

The Baseband Processor 157
Core Components 158
Real-World Interaction 159
Connectivity 160
Expansion, Development, and Debugging 160

What’s in a System-on-Chip (SoC)? 161
Memory Layout and Mapping 165
Development Setup 169
Evaluation Boards 171

6. Native User-Space. 175
Filesystem 175

The Root Directory 179

Table of Contents | vii

www.it-ebooks.info

http://www.it-ebooks.info/

/system 180
/data 182
SD Card 185
The Build System and the Filesystem 185

adb 191
Theory of Operation 191
Main Flags, Parameters, and Environment Variables 193
Basic Local Commands 194
Device Connection and Status 195
Basic Remote Commands 197
Filesystem Commands 202
State-Altering Commands 204
Tunneling PPP 207

Android’s Command Line 208
The Shell Up to 2.3/Gingerbread 209
The Shell Since 4.0/Ice-Cream Sandwich 210
Toolbox 211
Core Native Utilities and Daemons 220
Extra Native Utilities and Daemons 227
Framework Utilities and Daemons 228

Init 228
Theory of Operation 228
Configuration Files 230
Global Properties 238
ueventd 243
Boot Logo 245

7. Android Framework. 249
Kick-Starting the Framework 250

Core Building Blocks 250
System Services 254
Boot Animation 257
Dex Optimization 260
Apps Startup 262

Utilities and Commands 266
General-Purpose Utilities 266
Service-Specific Utilities 278
Dalvik Utilities 292

Support Daemons 297
installd 298
vold 299
netd 301

viii | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

rild 302
keystore 303
Other Support Daemons 304

Hardware Abstraction Layer 304

A. Legacy User-Space. 307

B. Adding Support for New Hardware. 323

C. Customizing the Default Lists of Packages. 337

D. Default init.rc Files. 341

E. Resources. 367

Index. 373

Table of Contents | ix

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Android’s growth is phenomenal. In a very short time span, it has succeeded in becom‐
ing one of the top mobile platforms in the market. Clearly, the unique combination of
open source licensing, aggressive go-to-market, and trendy interface is bearing fruit for
Google’s Android team. Needless to say, the massive user uptake generated by Android
has not gone unnoticed by handset manufacturers, mobile network operators, silicon
manufacturers, and app developers. Products, apps, and devices “for,” “compatible with,”
or “based on” Android seem to be coming out ever so fast.

Beyond its mobile success, however, Android is also attracting the attention of yet an‐
other, unintended crowd: embedded systems developers. While a large number of em‐
bedded devices have little to no human interface, a substantial number of devices that
would traditionally be considered “embedded” do have user interfaces. For a goodly
number of modern machines, in addition to pure technical functionality, developers
creating user-facing devices must also contend with human-computer interaction
(HCI) factors. Therefore, designers must either present users with an experience they
are already familiar with or risk alienating users by requiring them to learn a lesser-
known or entirely new user experience. Before Android, the user interface choices
available to the developers of such devices were fairly limited and limiting.

Clearly, embedded developers prefer to offer users an interface they are already familiar
with. Although that interface might have been window-based in the past—and hence a
lot of embedded devices were based on classic window-centric, desktop-like, or desktop-
based interfaces—Apple’s iOS and Google’s Android have forever democratized the use
of touch-based, iPhone-like graphical interfaces. This shift in user paradigms and ex‐
pectations, combined with Android’s open source licensing, have created a groundswell
of interest about Android within the embedded world.

Unlike Android app developers, however, developers wanting to do any sort of platform
work in Android, including porting or adapting Android to an embedded device, rap‐
idly run into quite a significant problem: the almost total lack of documentation on how
to do that. So, while Google provides app developers with a considerable amount of

xi

www.it-ebooks.info

http://www.it-ebooks.info/

online documentation, and while there are a number of books on the topic, such as
O’Reilly’s Learning Android, embedded developers have to contend with the minimal‐
istic set of documents provided by Google at http://source.android.com. In sum, em‐
bedded developers seriously entertaining the use of Android in their systems were es‐
sentially reduced to starting with Android’s source code.

The purpose of this book is to remedy that situation and to enable you to embed Android
in any device. You will, therefore, learn about Android’s architecture, how to navigate
its source code, how to modify its various components, and how to create your own
version for your particular device. In addition, you will learn how Android integrates
into the Linux kernel and understand the commonalities and differences it has with its
Linux roots. For instance, we will discuss how Android leverages Linux’s driver model
to create its very own hardware layer and how to take “legacy” Linux components such
as glibc and BusyBox and package them as part of Android. Along the way, you will
learn day-to-day tips and tricks, such as how to use Android’s repo tool and how to
integrate with or modify Android’s build system.

Learning How to Embed Android
I’ve been involved with open source software since the mid-’90s. I was fortunate enough
to join in before it became recognized as the powerful software movement that it is today
and, therefore, witness its rise firsthand in the early 2000s. I’ve also made my share of
open source contributions and, yes, participated in a couple of, shall we say, colorful
flame wars here and there. Among other things, I also wrote the first edition of O’Reilly’s
Building Embedded Linux Systems.

So when Android—which I knew was Linux-based—started becoming popular, I knew
enough about Linux’s history and embedded Linux to know that it was worth investi‐
gating. Then, I was naively thinking: “I know Linux fairly well and Android is based on
Linux; how hard could it be?” That is, until I actually started to seriously look into and,
most importantly, inside Android. That’s when I realized that Android was very foreign.
Little of what I knew about Linux and the packages it’s commonly used with in embedded
systems applied to Android. Not only that, but the abstractions built in Android were
even weirder still.

So began a very long (and ongoing) quest to figure things out. How does Android work?
How is it different from regular Linux? How can I customize it? How can I use it in an
embedded system? How do I build it? How does its app development API translate into
what I know about Linux’s user-space? etc. And the more I dug into Android, the more
alien it felt and the more questions I had.

The first thing I did was to actually go to http://developer.android.com and http://
source.android.com and print out everything I could get my hands on, save for the actual
developer API reference. I ended up with a stack of about 8 to 10 inches of paper. I read

xii | Preface

www.it-ebooks.info

http://shop.oreilly.com/product/0636920010883.do
http://source.android.com
http://shop.oreilly.com/product/9780596002220.do
http://developer.android.com
http://source.android.com
http://source.android.com
http://www.it-ebooks.info/

through most of it, underlined a lot of the key passages I found, added plenty of notes
in the margins, and created a whole list of questions I couldn’t find answers for. In
parallel, I started exploring the sources made available by Google through the Android
Open Source Project (AOSP). In all honesty, it took me about 6 to 12 months before I
actually started feeling confident enough to navigate within the AOSP.

The book you presently hold is a result of the work I’ve done on Android since starting
to explore it—including the various projects I’ve been involved in, such as helping dif‐
ferent development teams customizing Android for use in their embedded designs. And
I’ve learned enough about Android to say this: By no means is this book exhaustive.
There are a lot of things about Android and its internals that this book doesn’t and can’t
cover. This book should, nevertheless, allow you to jump-start your efforts in molding
Android to fit your needs.

Audience for This Book
This book is primarily geared toward developers who intend to create embedded sys‐
tems based on Android or who would like to take Android and customize it for specific
uses. It’s assumed you know about embedded systems development and have at least a
good handle on how Linux works and how to interact with its command line.

I don’t assume you have any knowledge of Java, and you can get away without knowing
Java for quite a few of the tasks required to customize Android. However, as your work
within Android progresses, you’ll find it necessary to start becoming familiar with Java
to a certain degree. Indeed, many of Android’s key parts are written in Java, and you’ll
therefore need to learn the language in order to properly integrate most additions to
specific parts of the stack.

This book isn’t, however, about either app development or Java programming in any
way. If these are the topics you are interested in, I recommend you look elsewhere. There
are quite a few books on each of these topics already available. This book isn’t about
embedded systems, either, and there are books on that topic, too. Finally, this book isn’t
about embedded Linux, which also has its own books. Still, being familiar with Linux’s
use in embedded systems is something of a plus when it comes to Android. Indeed,
though Android is a departure from all things traditionally known as “embedded Linux,”
many of the techniques typically used for creating embedded Linux systems can guide
and help in the creation of embedded Android systems.

This book will also be helpful to you if you’re interested in understanding Android’s
internals. Indeed, customizing Android for use in embedded systems requires knowing
at least some basics about its internals. So while the discussion isn’t geared toward a
thorough exploration of Android’s sources, the explanations do show how to interact
with the various parts of the Android stack at a fairly intimate level.

Preface | xiii

www.it-ebooks.info

http://www.it-ebooks.info/

Organization of the Material
Like many other titles, this book gradually builds in complexity as it goes, with the early
chapters serving as background material for later chapters. If you’re a manager and just
want to grab the essentials, or if you’re wondering which set of chapters you have to
read through before you can start skipping chapters and read material selectively, I
recommend you at least read through the first three chapters. That doesn’t mean that
the rest isn’t relevant, but the content is much more modular after that.

Chapter 1, Introduction, covers the general things you should know about Android’s
use in embedded systems, such as where it comes from, how its development model
and licensing differ from conventional open source projects, and the type of hardware
required to run Android.

Chapter 2, Internals Primer, digs into Android’s internals and exposes you to the main
abstractions it comprises. We start by introducing the app development model that app
developers are accustomed to. Then we dig into the Android-specific kernel modifica‐
tions, how hardware support is added in Android, the Android native user-space, Dal‐
vik, the system server, and the overall system startup.

Chapter 3, AOSP Jump-Start, explains how to get the Android sources from Google,
how to compile them into a functional emulator image, and how to run that image and
shell into it. Using the emulator is an easy way to explore Android’s underpinnings
without requiring actual hardware.

Chapter 4, The Build System, provides a detailed explanation of Android’s build system.
Indeed, unlike most open source projects out there, Android’s build system is nonre‐
cursive. This chapter explains the architecture of Android’s build system, how it’s typ‐
ically used within the AOSP, and how to add your own modifications to the AOSP.

Chapter 5, Hardware Primer, introduces you to the types of hardware for which Android
is designed. This includes covering the System-on-Chips (SoCs) typically used with
Android, the memory layout of typical Android systems, the typical development setup
to use with Android, and a couple of evaluation boards you can easily use for prototyping
embedded Android systems.

Chapter 6, Native User-Space, covers the root filesystem layout, the adb tool, Android’s
command line, and its custom init.

Chapter 7, Android Framework, discusses how the Android Framework is kick-started,
the utilities and commands used to interact with it, and the support daemons required
for it to operate properly.

Appendix A, Legacy User-Space, explains how to get a legacy stack of “embedded Linux”
software to coexist with Android’s user-space.

xiv | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B, Adding Support for New Hardware, shows you how to extend the Android
stack to add support for new hardware. This includes showing you how to add a new
system service and how to extend Android’s Hardware Abstraction Layer (HAL).

Appendix C, Customizing the Default Lists of Packages, provides you with pointers to
help you customize what’s included by default in AOSP-generated images.

Appendix D, Default init.rc Files, contains a commented set of the default init.rc files
used in version 2.3/Gingerbread and version 4.2/Jelly Bean.

Appendix E, Resources, lists a number of resources you may find useful, such as websites,
mailing lists, books, and events.

Software Versions
If you hadn’t already guessed it when you picked up this book, the versions we cover
here are likely way behind the current Android version. And that is likely to be the case
forever forward. In fact, I don’t ever expect any version of this book to be able to apply
to the latest release of Android. The reason is very simple: Android releases occur every
six months. It took almost two years to write this book and, from past experience, it
takes anywhere from six months to a year, if not more, to update an existing title to the
latest version of the software it covers.

So either you stop reading right now and return this book right away, or you read on
for a cogent explanation on how to best use this book despite its almost guaranteed
obsolescence.

Despite its very rapid release cycle, Android’s internal architecture and the procedures
for building it have remained almost unchanged since its introduction about five years
ago. So while this book was first written with 2.3/Gingerbread in mind, it’s been relatively
straightforward to update it to also cover 4.2/Jelly Bean with references included to
other versions, including 4.0/Ice-Cream Sandwich and 4.1/Jelly Bean where relevant.
Hence, while new versions add new features, and many of the software components we
discuss here will be enriched with every new version, the underlying procedures and
mechanisms are likely to remain applicable for quite some time still.

Therefore, while you can be assured that I am committed to continuing to monitor
Android’s development and updating this title as often as I humanly can, you should
still be able to benefit from the explanations contained in this book for quite a few more
versions than the ones covered.

Preface | xv

www.it-ebooks.info

http://www.it-ebooks.info/

Some actually expect 2.3/Gingerbread to be around for a very long time
given that its hardware requirements are much more modest than later
versions. At the AnDevCon IV conference in December 2012, for in‐
stance, the keynote speaker from Facebook explained that it expected
to have to support its app on devices running 2.3/Gingerbread for a
very long time, given that that version runs on cheaper hardware than
more recent versions.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example code

xvi | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

does not require permission. Incorporating a significant amount of example code from
this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Embedded Android by Karim Yaghmour
(O’Reilly). Copyright 2013 Karim Yaghmour, 978-1-449-30829-2.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you
easily search over 7,500 technology and creative reference books and
videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down‐
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub‐
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/embedded-android.

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

Preface | xvii

www.it-ebooks.info

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://oreil.ly/embedded-android
mailto:bookquestions@oreilly.com
http://www.it-ebooks.info/

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
This is my second book ever and my first in 10 years. I’m somewhat skeptical about self-
diagnosis, especially when I’m doing it myself—as I’m doing right here, but I clearly
seem to have a tendency to be naively drawn to exploring uncharted territory. When I
set out to write my first book, Building Embedded Linux Systems, in 2001, there wasn’t
any book describing in full what embedded Linux was about. It took me two years to
write down what was in fact half the material I originally thought would take me one
year to write. In the same way, there was practically no information about embedded
Android when I set out to write the present book in 2011. Somewhat coincidentally, it’s
taken me two years to finish the manuscript you’re presently holding in your hands (or,
these days, looking at on your screen, tablet, phone, or whichever device hadn’t yet been
conceived as I’m writing these lines.)

Overall, I’ve found that writing books feels like attrition warfare. Maybe that’s because
of the topics I choose, or maybe it’s just my own quirks. Still, akin to attrition warfare,
writing books on ambitious topics isn’t something that can be done alone. Indeed, when
I set out writing this book, I knew but a fraction of what you’ll find in these pages. While
you can bet that I’ve done a tremendous amount of research, I should also highlight that
what you have here is the result of a very large number of interactions I’ve had with
many talented developers, each of whom taught me a little bit more than what I knew
then. Therefore, if you’ve ever asked me a question at a conference or during a class, or
if you’ve ever explained to me what you’re doing with Android or what problems you’re
encountering with it or, better yet, have sent me in the right direction when I was lost
with Android, know that part of you is somewhere in here.

It also takes a special breed of publisher to make this type of book possible. As with my
first book, everyone at O’Reilly has simply been exceptional. I would like to first thank
Mike Hendrickson for believing in this project and in my ability to deliver it. It’s also
been a tremendous privilege to once more have the chance to work with Andy Oram
as an editor. He’s again done a fantastic job at vetting the text you’re reading and, of‐
tentimes, pointing out technical issues. In addition to Andy, I’d also like to thank Rachel
Roumeliotis and Maria Stallone for gently reminding me to continue pushing this book
forward.

xviii | Preface

www.it-ebooks.info

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

Another aspect of writing this type of book is that utmost caution has to be exercised
in order to ensure technical accuracy. It was therefore crucial for me to have a strong
technical review team. As such, I would like to start by thanking Magnus Bäck, Mark
Gross, and Amit Pundir for agreeing very early on in this project to review the book
and for having provided generous feedback over the long period when it was written.
This initial group was joined along the way by many other talented individuals. Hard‐
ware guru David Anders provided key feedback on the hardware chapter. Robert PJ Day
did a great job of making sure it made sense for those who’ve never been exposed to
Android. Benjamin Zores ironed out several aspects of the stack’s internals. Finally, some
readers of the book’s early versions, such as Andrew Van Uitert and Maxime Ripard,
gracefully shared with me some issues they found along the way.

I would like to most especially thank Linaro’s Android team and Bernhard Rosenkränzer
specifically for almost single-handedly pointing out the vast majority of discrepancies
between the earlier version of this book, which was very 2.3/Gingerbread-centric, and
4.2/Jelly Bean. If you’re happy to hold a book that covers two major Android versions,
one of which is the latest one at the time of this writing, thank Bernhard. Not only did
he force my hand in updating the book, but his input was by far the most extensive—
and often the most detailed. I would therefore like to warmly thank Zach Pfeffer for
offering his team’s help and making it possible for Bernhard to contribute, along with
Vishal Bhoj, Fahad Kunnathadi, and YongQin Liu.

As I said earlier, people I’ve met along the way at conferences have been instrumental
in this writing. I would therefore like to single out two organizations that have gone out
of their way to make it possible for me to participate in their conferences. First, I’d like
to thank the BZ Media team, who’ve been organizing the AnDevCon conferences since
early 2011 and who trusted me early on to talk about Android’s internals and have
continued inviting me since. Special thanks to Alan Zeichick, Ted Bahr, Stacy Burris,
and Katie Serignese. I’d also like to thank the Linux Foundation for giving me the chance
to keynote, speak, and participate in a number of events they’ve been organizing over
the years, including the Android Builders Summit, the Embedded Linux Conference,
and the Embedded Linux Conference Europe. Special thanks to Mike Woster, Amanda
McPherson, Angela Brown, Craig Ross, Maresa Fowler, Rudolf Streif, Dominic Duval,
Ibrahim Haddad, and Jerry Cooperstein.

A special thanks also to the team at RevolutionLinux, especially Benoit des Ligneris,
Bruno Lambert, and Patrick Turcotte, for agreeing to be my guinea pigs early on. Your
trust has borne fruit.

Finally, a very special thanks to Google’s Android team for having created one of the
best brain-teasers I’ve run into in a while. I say this sincerely: Exploring this operating
system has been one of the funnest things I’ve done in some time. Kudos to the entire
team for creating an amazing piece of software and making it available so generously
under such a permissive license. And while I understand this is an unconventional

Preface | xix

www.it-ebooks.info

http://www.it-ebooks.info/

1. The invisible hands that wrote the spaces between the lines are theirs, and for this I am profoundly grateful
to them.

open-source project where transparency isn’t (for good reason) on the agenda, I’d like
to thank those Android developers who’ve helped (or in some cases at least tried) in
various ways. Thanks to Brian Swetland for filling in the blanks every so often on LWN
and to Chet Haase.

These acknowledgments would be incomplete without closing with those who are clos‐
est to my heart. Thank you Sonia, Anaïs, Thomas, and Vincent for your loving patience
throughout. Les mains invisibles qui ont écrit les espaces entre les lignes sont les leurs et
je leur en suis profondémment reconnaissant.1

xx | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

1. Coinciding with Android’s initial announcement in November 2007, The New York Times ran an article
entitled “I, Robot: The Man Behind the Google Phone” by John Markoff, which gave an insightful background
portrait of Andy Rubin and his career. By extension, it provided a lot of insight on the story behind Android.
This section is partly based on that article.

CHAPTER 1

Introduction

Putting Android on an embedded device is a complex task involving an intricate un‐
derstanding of its internals and a clever mix of modifications to the Android Open
Source Project (AOSP) and the kernel on which it runs, Linux. Before we get into the
details of embedding Android, however, let’s start by covering some essential back‐
ground that embedded developers should factor in when dealing with Android, such
as Android’s hardware requirements, as well as the legal framework surrounding An‐
droid and its implications within an embedded setting. First, let’s look at where Android
comes from and how it was developed.

History
The story goes1 that back in early 2002, Google’s Larry Page and Sergey Brin attended
a talk at Stanford about the development of the then-new Sidekick phone by Danger
Inc. The speaker was Andy Rubin, Danger’s CEO at the time, and the Sidekick was one
of the first multifunction, Internet-enabled devices. After the talk, Larry went up to look
at the device and was happy to see that Google was the default search engine. Soon after,
both Larry and Sergey became Sidekick users.

Despite its novelty and enthusiastic users, however, the Sidekick didn’t achieve com‐
mercial success. By 2003, Rubin and Danger’s board agreed it was time for him to leave.
After trying out a few things, Rubin decided he wanted to get back into the phone OS
business. Using a domain name he owned, android.com, he set out to create an open
OS for phone manufacturers. After investing most of his savings in the project and

1

www.it-ebooks.info

http://www.nytimes.com/2007/11/04/technology/04google.html
http://www.it-ebooks.info/

having received some additional seed money, he set out to get the company funded.
Soon after, in August 2005, Google acquired Android Inc. with little fanfare.

Between its acquisition and its announcement to the world in November 2007, Google
released little to no information about Android. Instead, the development team worked
furiously on the OS while deals and prototypes were being worked on behind the scenes.
The initial announcement was made by the Open Handset Alliance (OHA), a group of
companies unveiled for the occasion with its stated mission being the development of
open standards for mobile devices and Android being its first product. A year later, in
September 2008, the first open source version of Android, 1.0, was made available.

Several Android versions have been released since then, and the OS’s progression and
development is obviously more public. As we will see later, though, much of the work
on Android continues to be done behind closed doors. Table 1-1 provides a summary
of the various Android releases and the most notable features found in the correspond‐
ing AOSP.

Table 1-1. Android versions
Version Release date Codename Most notable feature(s) Open source

1.0 September 2008 Unknown Yes

1.1 February 2009 Unknowna Yes

1.5 April 2009 Cupcake Onscreen soft keyboard Yes

1.6 September 2009 Donut Battery usage screen and VPN support Yes

2.0, 2.0.1, 2.1 October 2009 Eclair Exchange support Yes

2.2 May 2010 Froyo Just-in-Time (JIT) compile Yes

2.3 December 2010 Gingerbread SIP and NFC support Yes

3.0 January 2011 Honeycomb Tablet form-factor support No

3.1 May 2011 Honeycomb USB host support and APIs No

4.0 November 2011 Ice-Cream Sandwich Merged phone and tablet form-factor support Yes

4.1 June 2012 Jelly Bean Lots of performance optimizations Yes

4.2 November 2012 Jelly Bean Multiuser support Yes
a This version is rumored to have been called “Petit Four.” Have a look at this Google+ post for more information.

Features and Characteristics
Around the time 2.3.x/Gingerbread was released, Google used to advertise the following
features about Android on its developer site:

2 | Chapter 1: Introduction

www.it-ebooks.info

https://plus.google.com/107797272029781254158/posts/CABJ1RdxH8G
http://www.it-ebooks.info/

2. OpenGL ES is a version of the OpenGL standard aimed at embedded systems.

3. Android obviously supports more than just GSM telephony. Nevertheless, this is the feature’s name as it was
officially advertised.

Application framework
The application framework used by app developers to create what is commonly
referred to as Android apps. The use of this framework is documented online and
in books like O’Reilly’s Learning Android.

Dalvik virtual machine
The clean-room byte-code interpreter implementation used in Android as a re‐
placement for the Sun Java virtual machine (VM). While the latter inter‐
prets .class files, Dalvik interprets .dex files. These files are generated by the dx utility
using the .class files generated by the Java compiler part of the JDK.

Integrated browser
Android includes a WebKit-based browser as part of its standard list of applications.
App developers can use the WebView class to use the WebKit engine within their
own apps.

Optimized graphics
Android provides its own 2D graphics library but relies on OpenGL ES2 for its 3D
capabilities.

SQLite
This is the standard SQLite database found here and made available to app devel‐
opers through the application framework.

Media support
Android provides support for a wide range of media formats through StageFright,
its custom media framework. Prior to 2.2, Android used to rely on PacketVideo’s
OpenCore framework.

GSM telephony support3

The telephony support is hardware dependent, and device manufacturers must
provide a HAL module to enable Android to interface with their hardware. HAL
modules will be discussed in the next chapter.

Bluetooth, EDGE, 3G, and WiFi
Android includes support for most wireless connection technologies. While some
are implemented in Android-specific fashion, such as EDGE and 3G, others are
provided in the same way as in plain Linux, as in the case of Bluetooth and WiFi.

Features and Characteristics | 3

www.it-ebooks.info

http://developer.android.com
http://www.sqlite.org
http://www.it-ebooks.info/

Camera, GPS, compass, and accelerometer
Interfacing with the user’s environment is key to Android. APIs are made available
in the application framework to access these devices, and some HAL modules are
required to enable their support.

Rich development environment
This is likely one of Android’s greatest assets. The development environment avail‐
able to developers makes it very easy to get started with Android. A full SDK is
freely available to download, along with an emulator, an Eclipse plug-in, and a
number of debugging and profiling tools.

There are of course a lot more features that could be listed for Android, such as USB
support, multitasking, multitouch, SIP, tethering, voice-activated commands, etc., but
the previous list should give you a good idea of what you’ll find in Android. Also note
that every new Android release brings in its own new set of features. Check the Platform
Highlights published with every version for more information on features and en‐
hancements.

In addition to its basic feature set, the Android platform has a few characteristics that
make it an especially interesting platform for embedded development. Here’s a quick
summary:
Broad app ecosystem

At the time of this writing, there were 700,000 apps in Google Play, previously
known as the Android Market. This compares quite favorably to the Apple App
Store’s 700,000 apps and ensures that you have a large pool to choose from should
you want to prepackage applications with your embedded device. Bear in mind that
you likely need to enter into some kind of agreement with an app’s publisher before
you can package that app. The app’s availability in Google Play doesn’t imply the
right for you as a third party to redistribute it.

Consistent app APIs
All APIs provided in the application framework are meant to be forward-
compatible. Hence, custom apps that you develop for inclusion in your embedded
system should continue working in future Android versions. In contrast, modifi‐
cations you make to Android’s source code are not guaranteed to continue applying
or even working in the next Android release.

Replaceable components
Because Android is open source, and as a benefit of its architecture, a lot of its
components can be replaced outright. For instance, if you don’t like the default
Launcher app (home screen), you can write your own. More fundamental changes

4 | Chapter 1: Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

4. GStreamer is the default media framework used in most desktop Linux environments, including Gnome,
KDE, and XFCE.

can also be made to Android. The GStreamer4 developers, for example, were able
to replace StageFright, the default media framework in Android, with GStreamer
without modifying the app API.

Extendable
Another benefit of Android’s openness and its architecture is that adding support
for additional features and hardware is relatively straightforward. You just need to
emulate what the platform is doing for other hardware or features of the same type.
For instance, you can add support for custom hardware to the HAL by adding a
handful of files, as is explained in Appendix B.

Customizable
If you’d rather use existing components, such as the existing Launcher app, you can
still customize them to your liking. Whether it be tuning their behavior or changing
their look and feel, you are again free to modify the AOSP as needed.

Development Model
When considering whether to use Android, it’s crucial that you understand the rami‐
fications its development process may have on any modifications you make to it or to
any dependencies you may have on its internals.

Differences From “Classic” Open Source Projects
Android’s open source nature is one of its most trumpeted features. Indeed, as we’ve
just seen, many of the software engineering benefits that derive from being open source
apply to Android.

Despite its licensing, however, Android is unlike most open source projects in that its
development is done mostly behind closed doors. The vast majority of open source
projects, for example, have public mailing lists and forums where the main developers
can be found interacting with one another, and public source repositories providing
access to the main development branch’s tip. No such thing can be found for Android.

This is best summarized by Andy Rubin himself: “Open source is different than a
community-driven project. Android is light on community-driven, somewhat heavy on
open source.”

Whether we like it or not, Android is mainly developed within Google by the Android
development team, and the public is not privy to either internal discussions nor the tip
of the development branch. Instead, Google makes code-drops every time a new version
of Android ships on a new device, which is usually every six months. For instance, a

Development Model | 5

www.it-ebooks.info

http://www.it-ebooks.info/

few days after the Samsung Nexus S was released in December 2010, the code for the
new version of the Android it was running, 2.3/Gingerbread, was made publicly avail‐
able at http://android.googlesource.com/.

Obviously there is a certain amount of discomfort in the open source community with
the continued use of the term “open source” in the context of a project whose develop‐
ment model contradicts the standard modus operandi of open source projects, espe‐
cially given Android’s popularity. The open source community has not historically been
well served by projects that have adopted a similar development model. Others fear this
development model also makes them vulnerable to potential changes in Google’s busi‐
ness objectives.

Political issues aside, though, Android’s development model means that as a developer,
your ability to make contributions to Android is limited. Indeed, unless you become
part of the Android development team at Google, you will not be able to make contri‐
butions to the tip of the development branch. Also, save for a handful of exceptions, it’s
unlikely you will be able to discuss your enhancements one-on-one with the core de‐
velopment team members. However, you are still free to submit enhancements and fixes
to the AOSP code dumps made available at http://android.googlesource.com/.

The worst side effect of Google’s approach is that you have absolutely no way to get
inside information about the platform decisions being made by the Android develop‐
ment team. If new features are added within the AOSP, for example, or if modifications
are made to core components, you will find out how such changes are made and how
they impact changes you might have made to a previous version only by analyzing the
next code dump. Furthermore, you will have no way to learn about the underlying
requirement, restriction, or issue that justified the modification or inclusion. Had this
been a true open source project, a public mailing list archive would exist where all this
information, or pointers to it, would be available.

That being said, it’s important to remember how significant a contribution Google is
making by distributing Android under an open source license. Despite its awkward
development model from an open source community perspective, it remains that Goo‐
gle’s work on Android is a godsend for a large number of developers. Plus, it has ac‐
complished one thing no other open source project was ever able to: created a massively
successful Linux distribution. It would, therefore, be hard to fault Android’s develop‐
ment team for its work.

Furthermore, it can easily be argued that from a business and go-to-market perspective
that a community-driven process would definitely knock the wind out of any product
announcements Google would attempt to release, making it impossible to create “buzz”
around press announcements and the like, since every new feature would be developed
in the open. That is to say nothing of the nondeterministic nature of community-driven
processes that can see a group of people take years to agree on the best way to implement
a given feature set. And, simply based on track record, Android’s success has definitely

6 | Chapter 1: Introduction

www.it-ebooks.info

http://android.googlesource.com/
http://android.googlesource.com/
http://www.it-ebooks.info/

5. At the time of this writing, it’s the first time ever that Google Play catches up to the number of apps in the
App Store.

benefited from Google’s ability to rapidly move it forward and to generate press interest
based on releases of cool new products.

Feature Inclusion, Roadmaps, and New Releases
In brief, there is no publicly available roadmap for features and capabilities in future
Android releases. At best, Google will announce ahead of time the name and approxi‐
mate release date of the next version. Usually you can expect a new Android release to
be made in time for the Google I/O conference, which is typically held in May, and
another release by year-end. What will be in that release, though, is anyone’s guess.

Typically, however, Google will choose a single manufacturer to work with on the next
Android release. During that period, Google will work very closely with that single
manufacturer’s engineers to ready the next Android version to work on a targeted up‐
coming lead (or flagship) device. During that period, the manufacturer’s team is re‐
ported to have access to the tip of the development branch. Once the device is put on
the market, the corresponding source code dump is made to the public repositories. For
the next release, it chooses another manufacturer and starts over.

There is one notable exception to that cycle: Android 3.x/Honeycomb. In that specific
case, Google didn’t release the source code to the corresponding lead device, the Mo‐
torola Xoom. The rationale seems to have been that the Android development team
essentially forked the Android codebase at some point in time to start getting a tablet-
ready version of Android out ASAP, in response to market timing prerogatives. Hence,
in that version, very little regard was given to preserving backward compatibility with
the phone form factor. And given that, Google did not wish to make the code available
to avoid fragmentation of its platform. Instead, both phone and tablet form factor sup‐
port were merged into the subsequent Android 4.0/Ice-Cream Sandwich release.

Ecosystem
As of January 2013:

• 1.3 million Android phones are activated each day, up from 400,000 in June 2011
and 200,000 in August 2010.

• Google Play contains around 700,000 apps. In comparison, the Apple App Store
has about the same number of apps.5

• Android holds 72% of the global smartphone market.

Ecosystem | 7

www.it-ebooks.info

http://www.it-ebooks.info/

Android is clearly on the upswing. In fact, Gartner predicted in October 2012 that
Android would be the dominant OS, besting the venerable Windows, by 2016. Much
as Linux disrupted the embedded market about a decade ago, Android is poised to make
its mark. Not only will it flip the mobile market on its head, eliminating or sidelining
even some of the strongest players, but in the embedded space it is likely going to become
the de facto standard UI for a vast majority of user-centric embedded devices. There
are even signs that it might displace classic “embedded Linux” in headless (non-user-
centric) devices.

An entire ecosystem is therefore rapidly building around Android. Silicon and System-
on-Chip (SoC) manufacturers such as ARM, TI, Qualcomm, Freescale, and Nvidia have
added Android support for their products, and handset and tablet manufacturers such
as Motorola, Samsung, HTC, Sony, LG, Archos, Dell, and ASUS ship an ever-increasing
number of Android-equipped devices. This ecosystem also includes a growing number
of diverse players, such as Amazon, Verizon, Sprint, and Barnes & Noble, creating their
own application markets.

Grassroots communities and projects are also starting to sprout around Android, even
though it is developed behind closed doors. Many of those efforts are done using public
mailing lists and forums, like classic open source projects. Such community efforts
typically start by forking the official Android source releases to create their own Android
distributions with custom features and enhancements. Such is the case, for instance,
with the CyanogenMod project, which provides aftermarket images for power users.
There are also efforts by various silicon vendors to provide Android versions enabled
or enhanced for their platforms. For example, Linaro—a nonprofit organization created
by ARM SoC vendors to consolidate their platform-enablement work—provides its own
optimized Android tree. Other efforts follow in the footsteps of phone modders, which
essentially rely on hacking the binaries provided by the manufacturers to create their
own modifications or variants. Have a look at Appendix E for a full list of AOSP forks
and the communities developing them.

A Word on the Open Handset Alliance
As I mentioned earlier, the OHA was the initial vehicle through which Android was
first announced. It describes itself on its website as “a group of 82 technology and mobile
companies who have come together to accelerate innovation in mobile and offer con‐
sumers a richer, less expensive, and better mobile experience. Together we have devel‐
oped Android, the first complete, open, and free mobile platform.”

Beyond the initial announcement, however, it is unclear what role the OHA plays. For
example, an attendee at the “Fireside Chat with the Android Team” at Google I/O 2010
asked the panel what privileges were conferred to him as a developer for belonging to
a company that is part of the OHA. After asking around the panel, the speaker essentially
answered that the panel didn’t know because they aren’t the OHA. Hence, it would

8 | Chapter 1: Introduction

www.it-ebooks.info

http://reut.rs/UDAEr9
http://cyanogenmod.com
http://www.it-ebooks.info/

appear that OHA membership benefits are not clear to the Android development team
itself.

The role of the OHA is further blurred by the fact that it does not seem to be a full-time
organization with board members and permanent staff. Instead, it’s just an “alliance.”
In addition, there is no mention of the OHA within any of Google’s Android announce‐
ments, nor do any new Android announcements emanate from the OHA. In sum, one
would be tempted to speculate that Google likely put the OHA together mainly as a
marketing front to show the industry’s support for Android, but that in practice it has
little to no bearing on Android’s development.

Getting “Android”
There are two main pieces required to get Android working on your embedded system:
an Android-compatible Linux kernel and the Android Platform.

For a very long time, getting an Android-compatible Linux kernel was a difficult task;
it continues to be in some cases at the time of this writing. Instead of using a “vanilla”
kernel from http://kernel.org to run the Platform, you needed either to use one of the
kernels available within the AOSP or to patch a vanilla kernel to make it Android-
compatible. The underlying issue was that many additions were made to the kernel by
the Android developers in order to allow their custom Platform to work. In turn, these
additions’ inclusion in the official mainline kernel were historically met with a lot of
resistance.

While we’ll discuss kernel issues in greater detail in the next chapter, know that starting
from the Kernel Summit of 2011 in Prague, the kernel developers decided to proactively
seek to mainline the features required to run the Android Platform on top of the official
Linux kernel releases. As such, many of the required features have since been merged,
while others have been (or, at the time of this writing, are currently being) replaced or
superseded by other mechanisms. At the time of this writing, the easiest way to get
yourself an Android-ready kernel was to ask your SoC vendor. Indeed, given Android’s
popularity, most major SoC vendors provide active support for all Android-required
components for their products.

The Android Platform is essentially a custom Linux distribution containing the user-
space packages that make up what is typically called “Android.” The releases listed in
Table 1-1 are actually Platform releases. We will discuss the content and architecture of
the Platform in the next chapter. For the time being, keep in mind that a Platform release
has a role similar to that of standard Linux distributions such as Ubuntu or Fedora. It’s
a self-coherent set of software packages that, once built, provides a specific user expe‐
rience with specific tools, interfaces, and developer APIs.

Getting “Android” | 9

www.it-ebooks.info

http://kernel.org
http://www.it-ebooks.info/

While the proper term to identify the source code corresponding to the
Android distribution running on top of an Android-compatible kernel
is “Android Platform,” it is commonly referred to as “the AOSP”—as is
the case in fact throughout this book—even though the Android Open
Source Project proper, which is hosted on this site, contains a few more
components in addition to the Platform, such as sample Linux kernel
trees and additional packages that would not typically be downloaded
when the Platform is fetched using the usual repo command.

Hacking Binaries
Lack of access to Android sources hasn’t discouraged passionate modders from actually
hacking and customizing Android to their liking. For example, the fact that Android
3.x/Honeycomb wasn’t available didn’t preclude modders from getting it to run on the
Barnes & Noble Nook. They achieved this by retrieving the executable binaries found
in the emulator image provided as part of the Honeycomb SDK and used those as is on
the Nook, albeit forfeiting hardware acceleration. The same type of hack has been used
to “root” or update versions of various Android components on actual devices for which
the manufacturer provides no source code.

Legal Framework
Like any other piece of software, Android’s use and distribution is limited by a set of
licenses, intellectual property restrictions, and market realities. Let’s look at a few of
these.

Obviously I’m not a lawyer and this isn’t legal advice. You should talk
to competent legal counsel to see how any of the applicable terms or
licenses apply to your specific case. Still, I’ve been around open source
software long enough that you could consider what follows as an en‐
gineer’s educated point of view.

Code Licenses
As we discussed earlier, there are two parts to “Android”: an Android-compatible Linux
kernel and an AOSP release. Even though it’s modified to run the AOSP, the Linux kernel
continues to be subject to the same GNU GPLv2 license that it has always been under.
As such, remember that you are not allowed to distribute any modifications you make
to the kernel under any other license than the GPL. Hence, if you take a kernel version
from http://android.googlesource.com or your SoC vendor and modify it to make it run
on your system, you are allowed to distribute the resulting kernel image in your product

10 | Chapter 1: Introduction

www.it-ebooks.info

http://android.googlesource.com/
http://android.googlesource.com
http://www.it-ebooks.info/

6. See this LWN post by Brian Swetland, a member of Android’s kernel development team, for more information
on the rationale behind these choices.

only so long as you abide by the GPL. This means you must make the sources used to
create the image, including your modifications, available to recipients under the terms
of the GPL.

The COPYING file in the kernel’s sources includes a notice by Linus Torvalds that clearly
identifies that only the kernel is subject to the GPL, and that applications running on
top of it are not considered “derived works.” Hence, you are free to create applications
that run on top of the Linux kernel and distribute them under the license of your choice.

These rules and their applicability are generally well understood and accepted within
open source circles and by most companies that opt to support the Linux kernel or to
use it as the basis for their products. In addition to the kernel, a large number of key
components of Linux-based distributions are typically licensed under one form or an‐
other of the GPL. The GNU C library (glibc) and the GNU compiler (GCC), for example,
are licensed under the LGPL and the GPL respectively. Important packages commonly
used in embedded Linux systems such as uClibc and BusyBox are also licensed under
the LGPL and the GPL.

Not everyone is comfortable with the GNU GPL, however. Indeed, the restrictions it
imposes on the licensing of derived works can pose a serious challenge to large organ‐
izations, especially given geographic distribution, cultural differences among the vari‐
ous locations of development subunits, and the reliance on external subcontractors. A
manufacturer selling a product in North America, for example, might have to deal with
dozens, if not hundreds, of suppliers to get that product to the market. Each of these
suppliers might deliver a piece that may or may not contain GPL’ed code. Yet the man‐
ufacturer whose name appears on the item sold to the customer will be bound to provide
the sources to the GPL components regardless of which supplier originated them. In
addition, processes must be put in place to ensure that engineers who work on GPL-
based projects are abiding by the licenses.

When Google set out to work with manufacturers on its “open” phone OS, therefore, it
appears that very rapidly it became clear that the GPL had to be avoided as much as
possible. In fact, other kernels than Linux were apparently considered, but Linux was
chosen because it already had strong industry support, particularly from ARM silicon
manufacturers, and because it was fairly well isolated from the rest of the system, so that
its GPL licensing would have little impact.6

It was decided, though, that every effort would be made to make sure that the vast
majority of user-space components would be based on licenses that did not pose the
same logistical issues as the GPL. That is why many of the common GPL- and LGPL-
licensed components typically found in embedded Linux systems, such as glibc, uClibc,

Legal Framework | 11

www.it-ebooks.info

http://lwn.net/Articles/446371/
http://www.it-ebooks.info/

and BusyBox, aren’t included in the AOSP. Instead, the bulk of the components created
by Google for the AOSP are published under the Apache License 2.0 (a.k.a. ASL) with
some key components, such as the Bionic library (a replacement for glibc and uClibc)
and the Toolbox utility (a replacement for BusyBox), licensed under the BSD license.
Some classic open source projects are also incorporated, mostly as is in source form
under their original licensing, into the AOSP within the external/ directory. This means
that parts of the AOSP are made of software that is neither ASL nor BSD. The AOSP
does, in fact, still contain GPL and LGPL components. The distribution of the binaries
resulting from the compiling of such components, however, should not pose any prob‐
lems since they aren’t meant to be typically customized by the OEM (i.e., no derived
works are expected to be created) and the original sources of those components as used
in the AOSP are readily available for all to download at http://android.google
source.com, thereby complying, where necessary, with the GPL’s requirement that re‐
distribution of derivative works continue being made under the GPL.

Unlike the GPL, the ASL does not require that derivative works be published under a
specific license. In fact, you can choose whatever license best suits your needs for the
modifications you make. Here are the relevant portions from the ASL (the full license
is available from the Apache Software Foundation):

• “Subject to the terms and conditions of this License, each Contributor hereby grants
to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of, publicly display, pub‐
licly perform, sublicense, and distribute the Work and such Derivative Works in
Source or Object form.”

• “You may add Your own copyright statement to Your modifications and may pro‐
vide additional or different license terms and conditions for use, reproduction, or
distribution of Your modifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of the Work otherwise complies
with the conditions stated in this License.”

Furthermore, the ASL explicitly provides a patent license grant, meaning that you do
not require any patent license from Google for using the ASL-licensed Android code.
It also imposes a few “administrative” requirements—such as the need to clearly mark
modified files, to provide recipients with a copy of the ASL license, and to preserve
NOTICE files as is. Essentially, though, you are free to license your modifications under
the terms that fit your purpose. The BSD license that covers Bionic and Toolbox allows
similar binary-only distribution.

Hence, manufacturers can take the AOSP and customize it to their needs while keeping
those modifications proprietary if they wish, so long as they continue abiding by the
rest of the provisions of the ASL. If nothing else, this diminishes the burden of having

12 | Chapter 1: Introduction

www.it-ebooks.info

http://android.googlesource.com
http://android.googlesource.com
http://www.apache.org/licenses/
http://www.it-ebooks.info/

to implement a process to track all modifications in order to provide those modifications
back to recipients who would be entitled to request them had the GPL been used instead.

Adding GPL-Licensed Components
Although every effort has been made to keep the GPL out of Android’s user-space as
much as possible, there are cases where you may want to explicitly add GPL-licensed
components to your Android distribution. For example, you want to include either glibc
or uClibc, which are POSIX-compliant C libraries—in contrast to Android’s Bionic,
which is not—because you would like to run preexisting Linux applications on Android
without having to port them over to Bionic. Or you may want to use BusyBox in addition
to Toolbox, since the latter is much more limited in functionality than the former.

These additions may be specific to your development environment and may be removed
in the final product, or they may be permanent fixtures of your own customized An‐
droid. No matter which avenue you decide on, whether it be plain Android or Android
with some additional GPL packages, remember that you must follow the licenses’ re‐
quirements.

Branding Use
While being very generous with Android’s source code, Google controls most Android-
related branding elements more strictly. Let’s take a look at some of those elements and
their associated terms of use. For the official list, along with the official terms, have a
look at this site.
Android robot

This is the familiar green robot seen everywhere around all things Android. Its role
is similar to the Linux penguin, and the permissions for its use are similarly per‐
missive. In fact, Google states that it “can be used, reproduced, and modified freely
in marketing communications.” The only requirement is that proper attribution be
made according to the terms of the Creative Commons Attribution license.

Android logo
This is the set of letters in custom typeface that spell out A-N-D-R-O-I-D and that
appear during the device and emulator bootup, and on the Android website. You
are not authorized to use that logo under any circumstance. Chapter 7 shows you
how to replace the bootup logo.

Android custom typeface
This is the custom typeface used to render the Android logo, and its use is as re‐
stricted as the logo.

Legal Framework | 13

www.it-ebooks.info

http://bit.ly/Zu5HCV
http://android.com
http://www.it-ebooks.info/

“Android” in official names and messaging
As Google states, “ ‘Android’ by itself cannot be used in the name of an application
name or accessory product. Instead use ‘for Android.’ ” Therefore, you can’t say
“Android MediaPlayer,” but you can say “MediaPlayer for Android.” Google also
states that “Android may be used as a descriptor, as long as it is followed by a proper
generic term” such as “Android™ application” for example. Of course, proper trade‐
mark attribution must always be made. In sum, you can’t name your product “An‐
droid Foo” without Google’s permission, though “Foo for Android” is fine.

“Android”-branded devices
As the FAQ for the Android Compatibility Program (ACP) states: “[I]f a manufac‐
turer wishes to use the Android name with their product...they must first demon‐
strate that the device is compatible.” Branding your device as being “Android” is
therefore a privilege that Google intends to police. In essence, you will have to make
sure your device is compliant and then talk to Google and enter into some kind of
agreement with it before you can advertise your device as being “Foo Android.” We
will cover the Android Compatibility Program later in this chapter.

“Droid” in official names
You may not use “Droid” alone in a name, such as “Foo Droid,” for example. For
some reason the I haven’t yet entirely figured out, “Droid” is a trademark of Lu‐
casfilm. Achieve a Jedi rank, you likely must, before you can use it.

Word (and Brand) Play
While Google holds strict control over the use of the Android brand, the ASL used for
licensing the bulk of the AOSP states the following: “This License does not grant per‐
mission to use the trade names, trademarks, service marks, or product names of the
Licensor, except as required for reasonable and customary use in describing the origin
of the Work and reproducing the content of the NOTICE file.”

While this clearly says you have no right to use the associated trademark, the “reasonable
and customary use in describing the origin” exception is seen by many as allowing you
to state that your device is “AOSP based.” Some push this further and simply state that
their product is “based on Android” or “Android based.” You’ll even find some clever
marketing material sporting the Android robot to advertise a product without men‐
tioning the word “Android.”

Probably one of the sneakiest wordplays I’ve seen is when a product lists the following
as part of one of its features: “Runs Android applications.” You can bet yourself a couple
of green robots that if it runs Android applications, it’s almost guaranteed to contain
the AOSP in some way, shape, or form.

14 | Chapter 1: Introduction

www.it-ebooks.info

http://source.android.com/faqs.html#compatibility
http://www.it-ebooks.info/

7. See Gosling’s blog postings on the topic at http://nighthacks.com/roller/jag/entry/the_shit_finally_hits_the
and http://nighthacks.com/roller/jag/entry/quite_the_firestorm for more details.

Google’s Own Android Apps
While the AOSP contains a core set of applications that are available under the ASL,
“Android”-branded phones usually contain an additional set of “Google” applications
that are not part of the AOSP, such as Play Store (the “app market” app), YouTube, “Maps
and Navigation,” Gmail, etc. Obviously, users expect to have these apps as part of An‐
droid, and you might therefore want to make them available on your device. If that is
the case, you will need to abide by the ACP and enter into an agreement with Google,
very much in line with what you need to do to be allowed to use “Android” in your
product’s name. We will cover the ACP shortly.

Alternative App Markets
Though the main app market (i.e., Google Play) is the one hosted by Google and made
available to users through the Play Store app installed on “Android”-branded devices,
other players are leveraging Android’s open APIs and open source licensing to offer
alternative app markets. Such is the case with online merchants such as Amazon and
Barnes & Noble, as well as mobile network operators such as Verizon and Sprint. In
fact, I know of nothing that would preclude you from creating your own app store.
There is even at least one open source project, the Affero-licensed F-Droid Reposito‐
ry, that provides both an app market application and a corresponding server backend
under the GPL.

Oracle versus Google
As part of acquiring Sun Microsystems, Oracle also acquired Sun’s intellectual property
(IP) rights to the Java language and, according to Java creator James Gosling,7 it was
clear during the acquisition process that Oracle intended from the outset to go after
Google with Sun’s Java IP portfolio. And in August 2010 it did just that, filing suit against
Google, claiming that it infringed on several patents and committed copyright viola‐
tions.

Without going into the merits of the case, it’s obvious that Android does indeed heavily
rely on Java. And clearly Sun created Java and owned a lot of intellectual property around
the language it created. In what appears to have been an effort to anticipate any claims
Sun may put forward against Android, the Android development team went out of its
way to use as little of Sun’s Java in the Android OS as possible. Java is in fact composed
mainly of three things: the language and its semantics, the virtual machine that runs the
Java byte-code generated by the Java compiler, and the class library that contains the
packages used by Java applications at runtime.

Legal Framework | 15

www.it-ebooks.info

http://nighthacks.com/roller/jag/entry/the_shit_finally_hits_the
http://nighthacks.com/roller/jag/entry/quite_the_firestorm
http://f-droid.org/repository/
http://f-droid.org/repository/
http://www.it-ebooks.info/

The official versions of the Java components are provided by Oracle as part of the Java
Development Kit (JDK) and the Java Runtime Environment (JRE). Android, on the
other hand, relies only on the Java compiler found in the JDK for building parts of the
AOSP; that compiler isn’t included as part of the images generated by the AOSP. Also,
instead of using Oracle’s Java VM, Android relies on Dalvik, a VM custom built for
Android, and instead of using the official class library, Android relies on Apache Har‐
mony, a clean-room reimplementation of the class library. Hence, it would seem that
Google made every reasonable effort to at least avoid any copyright and/or distribution
issues.

Still, it remains to be seen where these legal proceedings will go. Although by May 2012
Google had prevailed on both the copyright and patent fronts of the initial trial, Oracle
appealed the verdict in October of that same year. There is of course a lot at stake, and
it will likely take many years for this saga to play itself out. If you want to follow the
latest round of these proceedings or read up on past episodes, I suggest you have a look
at the Groklaw website and consult the relevant Wikipedia entry.

Another indirectly related, yet very relevant, development is that IBM joined Oracle’s
OpenJDK efforts in October 2010. IBM had been the driving force behind the Apache
Harmony project, which is the class library used in Android, and its departure pretty
much ensures that the project will become orphaned. How this development impacts
Android is unknown at the time of this writing.

Incidentally, though he later left, James Gosling joined Google in March 2011.

Mobile Patent Warfare
The previous section is to some extent but the tip of the iceberg with regard to litigation
and legal wranglings ongoing in the mobile world at the time of this writing. Sales of
mobile phones have overtaken the sales of traditional PCs, and the mobile market’s
growth has resulted in the majority of players being somehow involved in legal ma‐
neuvers against and/or because of its competitors. There’s even a Wikipedia entry en‐
titled Smartphone wars dedicated to listing the ongoing battles.

It’s hard to say where any of this will go. There seems to be no end to the variety of
strategies companies will employ or the lengths to which they’ll go to ensure they prevail.
Apple and Samsung, for instance, are at the time of this writing involved in court cases
against each other in quite a few countries. Microsoft is also rumored to be contacting
various manufacturers to request royalties for the use of Android; as evidenced by some
of the filings made by Barnes & Noble with the courts after it was sued by Microsoft for
refusing to pay.

16 | Chapter 1: Introduction

www.it-ebooks.info

http://groklaw.net
http://en.wikipedia.org/wiki/Oracle_v._Google
http://en.wikipedia.org/wiki/Smartphone_wars
http://bit.ly/XKRssa
http://bit.ly/XKRssa
http://www.it-ebooks.info/

How any of this might affect your own product is difficult to say. As always, consult with
competent legal counsel as needed. Usually it’s a question of volume. So if your product
is for a niche market, you’re probably too small a fish to matter. If you’re creating a
mass-market product, on the other hand, you’ll likely want to make sure you’ve covered
all your bases.

Hardware and Compliance Requirements
In principle, Android should run on any hardware that runs Linux. Android has in fact
been made to run on ARM, x86, MIPS, SuperH, and PowerPC—all architectures sup‐
ported by Linux. A corollary to this is that if you want to port Android to your hardware,
you must first port Linux to it. Beyond being able to run Linux, though, there are few
other hardware requirements for running the AOSP, apart from the logical requirement
of having some kind of display and pointer mechanism to allow users to interact with
the interface. Obviously, you might have to modify the AOSP to make it work on your
hardware configuration, if you don’t support a peripheral it expects. For instance, if you
don’t have a GPS unit in your product, you might want to provide a mock GPS HAL
module, as the Android emulator does, to the AOSP. You will also need to make sure
you have enough memory to store the Android images and a sufficiently powerful CPU
to give the user a decent experience.

In sum, therefore, there are few restrictions if you just want to get the AOSP up and
running on your hardware. If, however, you are working on a device that must carry
“Android” branding or must include the standard Google-owned applications found in
typical consumer Android devices—such as the Maps or Play Store applications—you
need to go through the Android Compatibility Program (ACP) mentioned earlier. There
are two separate yet complementary parts to the ACP: the Compliance Definition
Document (CDD) and the Compliance Test Suite (CTS). Even if you don’t intend to
participate in the ACP, you might still want to take a look at the CDD and the CTS, as
they give a very good idea about the general mind-set that went into the design goals of
the Android version you intend to use.

Every Android release has its own CDD and CTS. You must therefore
use the CDD and CTS that match the version you intend to use for your
final product. If you switch Android releases midway through your
project—because, for instance, a new Android release comes out with
cool new features you’d like to have—you will need to make sure you
comply with that release’s CDD and CTS. Keep in mind also that you
need to interact with Google to confirm compliance. Hence, switching
may involve jumping through a few hoops and potential product de‐
livery delays.

Hardware and Compliance Requirements | 17

www.it-ebooks.info

http://www.it-ebooks.info/

The overarching goal of the ACP, and therefore the CDD and the CTS, is to ensure a
uniform ecosystem for users and application developers. Hence, before you are allowed
to ship an “Android”-branded device, Google wants to make sure you aren’t fragmenting
the Android ecosystem by introducing incompatible or crippled products. This, in turn,
makes sense for manufacturers since they are benefiting from the compliance of others
when they use the “Android” branding. Look at this site for more details about the ACP.

Note that Google reserves the right to decline your participation in the
Android ecosystem, and therefore prevent your ability to ship the Play
Store app with your device and use the “Android” branding. As stated
on their site: “Unfortunately, for a variety of legal and business reasons,
we aren’t able to automatically license Google Play to all compatible
devices.”

Compliance Definition Document
The CDD is the policy part of the ACP and is available at the ACP URL above. It specifies
the requirements that must be met for a device to be considered compatible. The lan‐
guage in the CDD is based on RFC2119, with a heavy use of “MUST,” “SHOULD,” “MAY,”
etc. to describe the different attributes. Around 25 pages in length, it covers all aspects
of the device’s hardware and software capabilities. Essentially, it goes over every aspect
that cannot simply be automatically tested using the CTS. Let’s go over some of what
the CDD requires.

This discussion is based on the Android 2.3/Gingerbread CDD. The
specific version you use will likely have slightly different requirements.

Software

This section lists the Java and native APIs along with the web, virtual machine, and user
interface compatibility requirements. Essentially, if you are using the AOSP, you should
readily conform to this section of the CDD.

Application packaging compatibility

This section specifies that your device must be able to install and run .apk files. All
Android apps developed using the Android SDK are compiled into .apk files, and these
are the files that are distributed through Google Play and installed on users’ devices.

Multimedia compatibility

Here the CDD describes the media codecs (decoders and encoders), audio recording,
and audio latency requirements for the device. The AOSP includes the StageFright

18 | Chapter 1: Introduction

www.it-ebooks.info

http://source.android.com/compatibility/
http://www.it-ebooks.info/

multimedia framework, and you can therefore conform to the CDD by using the AOSP.
However, you should read the audio recording and latency sections, as they contain
specific technical information that may impact the type of hardware or hardware con‐
figuration your device must be equipped with.

Developer tool compatibility

This section lists the Android-specific tools that must be supported on your device.
Basically, these are the common tools used during app development and testing: adb,
ddms, and monkey. Typically, developers don’t interact with these tools directly. Instead,
they usually develop within the Eclipse development environment and use the Android
Development Tool (ADT) plug-in, which takes care of interacting with the lower-level
tools.

Hardware compatibility

This is probably the most important section for embedded developers, as it likely has
profound ramifications on the design decisions made for the targeted device. Here’s a
summary of what each subsection spells out.
Display and graphics

• Your device’s screen must be at least 2.5 inches in physical diagonal size.
• Its density must be at least 100dpi.
• Its aspect ratio must be between 4:3 and 16:9.
• It must support dynamic screen orientation from portrait to landscape and vice

versa. If orientation can’t be changed, then it must support letterboxing, since
apps may force orientation changes.

• It must support OpenGL ES 1.0, though it may omit 2.0 support.

Input devices
• Your device must support the Input Method Framework, which allows devel‐

opers to create custom onscreen, soft keyboards.
• It must provide at least one soft keyboard.
• It can’t include a hardware keyboard that doesn’t conform to the API.
• It must provide Home, Menu, and Back buttons.
• It must have a touch screen, whether it be capacitive or resistive.
• It should support independent tracked points (multitouch) if possible.

Sensors
While all sensors are qualified using “SHOULD,” meaning that they aren’t com‐
pulsory, your device must accurately report the presence or absence of sensors and
must return an accurate list of supported sensors.

Hardware and Compliance Requirements | 19

www.it-ebooks.info

http://www.it-ebooks.info/

Data connectivity
The most important item here is an explicit statement that Android may be used
on devices that don’t have telephony hardware. This was added to allow for
Android-based tablet devices. Furthermore, your device should have hardware
support for 802.11x, Bluetooth, and near field communication (NFC). Ultimately,
your device must support some form of networking that permits a bandwidth of
200Kbps.

Cameras
Your device should include a rear-facing camera and may include a front-facing
one as well.

Memory and storage
• Your device must have at least 128MB for storing the kernel and user-space.
• It must have at least 150MB for storing user data.
• It must have at least 1GB of “shared storage.” This is typically, though not always,

the removable SD card.
• It must also provide a mechanism to access shared data from a PC. In other

words, when the device is connected through USB, the content of the SD card
must be accessible on the PC.

USB
This requirement is likely the one that most heavily demonstrates how user-centric
“Android”-branded devices must be, since it essentially assumes that the user owns
the device and therefore requires you to allow users to fully control the device when
it’s connected to a computer. In some cases this might be a showstopper for you, as
you may not actually want or may not be able to have users connect your embedded
device to a computer. Nevertheless, the CDD requires the following:

• Your device must implement a USB client, connectable through USB-A.
• It must implement the Android Debug Bridge (ADB) protocol as provided in

the adb command over USB.
• It must implement USB mass storage, thereby allowing the device’s SD card to

be accessed on the host.

Newer CDDs obviously have evolved from this list. There’s no longer a need to have
physical Home, Menu, and Back buttons since 3.0, since those can be displayed
onscreen. OpenGL ES 2.0 support is also now mandatory. In addition to USB mass
storage support, the device can also now provide Media Transfer Protocol (MTP)
instead.

20 | Chapter 1: Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

Performance compatibility

Although the CDD doesn’t specify CPU speed requirements, it does specify app-related
time limitations that will impact your choice of CPU speed. For instance:

• The Browser app must launch in less than 1300ms.
• The MMS/SMS app must launch in less than 700ms.
• The AlarmClock app must launch in less than 650ms.
• Relaunching an already-running app must take less time than the original launch.

Security model compatibility

Your device must conform to the security environment enforced by the Android ap‐
plication framework, Dalvik, and the Linux kernel. Specifically, apps must have access
and be submitted to the permission model described as part of the SDK’s documenta‐
tion. Apps must also be constrained by the same sandboxing limitations they have by
running as separate processes with distinct user IDs (UIDs) in Linux. The filesystem
access rights must also conform to those described in the developer documentation.
Finally, if you aren’t using Dalvik, whatever VM you use should impose the same security
behavior as Dalvik.

Software compatibility testing

Your device must pass the CTS, including the human-operated CTS Verifier part. In
addition, your device must be able to run specific reference applications from Google
Play.

Updatable software

There has to be a mechanism for your device to be updated. This may be done over the
air (OTA) with an offline update via reboot. It also may be done using a “tethered” update
via a USB connection to a PC, or be done “offline” using removable storage.

Compliance Test Suite
The CTS comes as part of the AOSP, and we will discuss how to build and use it in
Chapter 4. The AOSP includes a special build target that generates the cts command-
line tool, the main interface for controlling the test suite. The CTS relies on adb to push
and run tests on the USB-connected target. The tests are based on the JUnit Java unit
testing framework, and they exercise different parts of the framework, such as the APIs,
Dalvik, Intents, Permissions, etc. Once the tests are done, they will generate a ZIP file
containing XML files and screenshots that you need to submit to cts@android.com.

Hardware and Compliance Requirements | 21

www.it-ebooks.info

mailto:cts@android.com
http://www.it-ebooks.info/

8. More recent versions such as JellyBean 4.1 and 4.2 can be built only on 64-bit systems.

9. These uncompiled numbers don’t count the space taken by the .git and .repo directories in the tree. The
uncompiled size of 2.3.7/Gingerbread with those directories is 5.5GB and that of 4.2/Jelly Bean is 18GB.

Development Setup and Tools
There are two separate sets of tools for Android development: those used for application
development and those used for platform development. If you want to set up an appli‐
cation development environment, have a look at Learning Android or at Google’s online
documentation. If you want to do platform development, as we will do here, your tool
needs will vary, as you will see later in this book.

At the most basic level, though, you need to have a Linux-based workstation to build
the AOSP. In fact, at the time of this writing, Google’s only supported build environment
is 64-bit Ubuntu 10.04. That doesn’t mean that another Ubuntu version or even another
Linux distribution won’t work or, in the case of Android versions up to Gingerbread,
that you won’t be able to build the AOSP on a 32-bit system,8 but essentially that con‐
figuration reflects Google’s own Android compile farms configuration. An easy way to
get your hands dirty with AOSP work without changing your workstation OS is to create
an Ubuntu virtual machine using your favorite virtualization tool. I typically use Vir‐
tualBox, since I’ve found that it makes it easy to access the host’s serial ports in the
guest OS.

In some cases, even though 32-bit build support wasn’t available for a
given Android version, patches were created to make such compiling
possible. This is especially true for Gingerbread. So even though the
official tree may not support 32-bit builds, you may be able to find
another tree that does or a mailing list posting that explains how to
do it. Still, it remains that newer AOSP versions require more and
more powerful machines to build in a reasonable amount of time, and
most of these systems end up being 64 bit. Hence, the impetus for
supporting builds on 32-bit systems diminishes with every new ver‐
sion of Android.

No matter what your setup is, keep in mind that the AOSP is several gigabytes in size
before building, and its final size is much larger. Gingerbread, for example, is about 3GB
in size uncompiled and grows to about 10GB once compiled, while 4.2/Jelly Bean is 6GB
uncompiled and grows to about 24GB once compiled.9 When you factor in that you are
likely going to operate on a few separate versions—for testing purposes if for no other
reason—you rapidly realize that you’ll need tens if not hundreds of gigabytes for serious
AOSP work. Also note that during the period this book was written (2011 to 2013),
build times for the latest AOSP on the highest-end machines have always hovered

22 | Chapter 1: Introduction

www.it-ebooks.info

http://developer.android.com/
http://developer.android.com/
http://www.virtualbox.org/
http://www.virtualbox.org/
http://www.it-ebooks.info/

between 30 minutes to an hour. Even minor modifications may result in a five-minute
run to complete the build or regenerate output images. You will therefore also likely
want to make sure you have a fairly powerful machine when developing Android-based
embedded systems. We’ll discuss the AOSP build and its requirements in greater detail
in Chapter 4.

Development Setup and Tools | 23

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

1. Some speculate that this change was triggered because some app developers were doing too many fancy tricks
with notification that were having negative impacts on the System Server, and that the Android team hence
decided to make the Status Bar a separate process from the System Server.

CHAPTER 2

Internals Primer

As we’ve just seen, Android’s sources are freely available for you to download, modify,
and install for any device you choose. In fact, it is fairly trivial to just grab the code, build
it, and run it in the Android emulator. To customize the AOSP to your device and its
hardware, however, you’ll need to first understand Android’s internals to a certain ex‐
tent. So you’ll get a high-level view of Android internals in this chapter, and have the
opportunity in later chapters to dig into parts of internals in greater detail, including
tying said internals to the actual AOSP sources.

As mentioned in the Preface, this book is mainly based on 2.3.x/Ginger‐
bread. That said, Android’s internals had remained fairly stable over its
lifetime up to that version of Android, and they’ve changed very little
from that version to the current 4.2/Jelly Bean. Still, while the bulk of
the internals remains relatively unchanged, critical changes can come
unannounced thanks to Android’s closed development process. For in‐
stance, in 2.2/Froyo and previous versions, the Status Bar was an inte‐
gral part of the System Server. In 2.3/Gingerbread, the Status Bar was
moved out of the System Server and now runs independently from it.1

App Developer’s View
Given that Android’s development API is unlike any other existing API, including any‐
thing found in the Linux world, it’s important to spend some time understanding what
“Android” looks like from the app developers’ perspective, even though it’s very different
from what Android looks like for anyone hacking the AOSP. As an embedded developer

25

www.it-ebooks.info

http://www.it-ebooks.info/

working on embedding Android on a device, you might not have to actually deal directly
with the idiosyncrasies of Android’s app development API, but some of your colleagues
might. If nothing else, you might as well share a common lingo with app developers. Of
course, this section is merely a summary, and I recommend you read up on Android
app development for more in-depth coverage.

Android Concepts
Application developers must take a few key concepts into account when developing
Android apps. These concepts shape the architecture of all Android apps and dictate
what developers can and cannot do. Overall, they make users’ lives better, but they can
sometimes be challenging to deal with.

Components

Android applications consist of loosely tied components. Components of one app can
invoke or use components of other apps. Most importantly, there is no single entry point
to an Android app: no main() function or any equivalent. Instead, there are predefined
events called intents that developers can tie their components to, thereby enabling their
components to be activated on the occurrence of the corresponding events. A simple
example is the component that handles the user’s contacts database, which is invoked
when the user presses a Contacts button in the Dialer or another app. An app, therefore,
can have as many entry points as it has components.

There are four main types of components:
Activities

Just as the “window” is the main building block of all visual interaction in window-
based GUI systems, activities are the main building block in an Android app. Unlike
a window, however, activities cannot be “maximized,” “minimized,” or “resized.”
Instead, activities always take the entirety of the visual area and are made to be
stacked on top of one another in the same way as a browser remembers web pages
in the sequence they were accessed, allowing the user to go back to where he was
previously. In fact, as described in the previous chapter, all Android devices have a
Back button, whether it be a physical button on the device or a soft button displayed
onscreen, to make this behavior available to the user. In contrast to web browsing,
though, there is no button corresponding to the “forward” browsing action; only
“back” is possible.

One globally defined Android intent allows an activity to be displayed as an icon
on the app launcher (the main app list on the device). Because the vast majority of
apps want to appear on the main app list, they provide at least one activity that is
defined as capable of responding to that intent. Typically, the user will start from a
particular activity and move through several others and end up creating a stack of
activities all related to the original one they launched; this stack of activities is called

26 | Chapter 2: Internals Primer

www.it-ebooks.info

http://www.it-ebooks.info/

a task. The user can then switch to another task by clicking the Home button and
starting another activity stack from the app launcher.

Services
Android services are akin to background processes or daemons in the Unix world.
Essentially, a service is activated when another component requires its services and
typically remains active for the duration required by its caller. Most importantly,
though, services can be made available to components outside an app, thereby ex‐
posing some of that app’s core functionality to other apps. There is usually no visual
sign of a service being active.

Broadcast receivers
Broadcast receivers are akin to interrupt handlers. When a key event occurs, a
broadcast receiver is triggered to handle that event on the app’s behalf. For instance,
an app might want to be notified when the battery level is low or when “airplane
mode” (to shut down the wireless connections) has been activated. When not han‐
dling a specific event for which they are registered, broadcast receivers are otherwise
inactive.

Content providers
Content providers are essentially databases. Usually, an app will include a content
provider if it needs to make its data accessible to other apps. If you’re building a
Twitter client app, for instance, you could give other apps on the device access to
the tweet feed you’re presenting to the user through a content provider. All content
providers present the same API to apps, regardless of how they are actually imple‐
mented internally. Most content providers rely on the SQLite functionality included
in Android, but they can also use files or other types of storage.

Intents

Intents are one of the most important concepts in Android. They are the late-binding
mechanisms that allow components to interact. An app developer could send an intent
for an activity to “view” a web page or “view” a PDF, hence making it possible for the
user to view a designated HTML or PDF document even if the requesting app itself
doesn’t include the capabilities to do so. More fancy use of intents is also possible. An
app developer could, for instance, send a specific intent to trigger a phone call.

Think of intents as polymorphic Unix signals that don’t necessarily have to be predefined
or require a specific designated target component or app. If you are familiar with Qt,
you can think of an intent as similar to, though not entirely the same as, a Qt signal. The
intent itself is a passive object. The effects of its dispatching will depend on its content,
the mechanism used to dispatch it, the system’s built-in rules, and the set of installed
apps. One of the system’s rules, for instance, is that intents are tied to the type of
component they are sent to. An intent sent to a service, for example, can be received
only by a service, not by an activity or a broadcast receiver.

App Developer’s View | 27

www.it-ebooks.info

http://www.it-ebooks.info/

Components can be declared as capable of dealing with given intent types using filters
in the manifest file. The system will thereafter match intents to that filter and trigger the
corresponding component at runtime. This is typically called an “implicit” intent. An
intent can also be sent to a specific component in an “explicit” fashion, bypassing the
need to declare that intent within the receiving component’s filter. The explicit invoca‐
tion, though, requires the app to know about the designated component ahead of time,
which typically applies only when intents are sent within components of the same app.

Component lifecycle

Another central tenet of Android is that the user shouldn’t have to manage task switch‐
ing. While there are a number of ways to switch among tasks, including a built-in
mechanism that’s typically accessed with a long press on the Home button, as well as a
number of task manager apps available for Android, the user experience doesn’t rely on
those. Instead, the user is expected to start as many apps as he wants and “switch” among
them by clicking Home to go to the home screen and clicking any other app. The app
he clicks may be an entirely new one, or one that he previously started and for which
an activity stack (a.k.a. a “task”) already exists.

The corollary to, or consequence of, this design decision is that apps gradually use up
more and more system resources as they are started, a process that can’t go on forever.
At some point, the system will have to start reclaiming the resources of the least recently
used or nonpriority components in order to make way for newly activated components.
Still, this resource recycling should be entirely transparent to the user. In other words,
when a component is taken down to make way for a new one, and then the user returns
to the original component, it should start up at the point where it was taken down and
act as if it had been waiting in memory all along.

To make this behavior possible, Android defines a standard lifecycle for each component
type. An app developer must manage her components’ lifecycle by implementing a series
of callbacks for each component. These callbacks are then triggered by events related
to the component lifecycle. For instance, when an activity is no longer in the foreground
(and therefore more likely to be destroyed than if it’s in the foreground), its on
Pause() callback is triggered. Google uses a state diagram to explain the activity’s life‐
cycle to app developers.

Managing component lifecycles is one of the greatest challenges faced by app developers,
because they must carefully save and restore component states on key transitional
events. The desired end result is that the user never needs to “task switch” between apps
or be aware that components from previously used apps were destroyed to make way
for new ones he started.

28 | Chapter 2: Internals Primer

www.it-ebooks.info

https://developer.android.com/images/training/basics/basic-lifecycle.png
http://www.it-ebooks.info/

Manifest file

If there has to be a “main” entry point to an app, the manifest file is likely it. Basically,
it informs the system of the app’s components, the capabilities required to run the app,
the minimum level of the API required, any hardware requirements, etc. The manifest
is formatted as an XML file and resides at the topmost directory of the app’s sources as
AndroidManifest.xml. The apps’ components are typically all described statically in the
manifest file. In fact, apart from broadcast receivers, which can be registered at runtime,
all other components must be declared at build time in the manifest file.

Processes and threads

Whenever an app’s component is activated, whether it be by the system or by another
app, a process will be started to house that app’s components. And unless the app de‐
veloper does anything to override the system defaults, all other components of that app
that start after the initial component is activated will run within the same process as that
component. In other words, all components of an app are contained within a single
Linux process. Hence, developers should avoid making long or blocking operations in
standard components and use threads instead.

And because the user is essentially allowed to activate as many components as he wants,
several Linux processes are typically active at any time to serve the many apps containing
the user’s components. When there are too many processes running to allow for new
ones to start, the Linux kernel’s out-of-memory (OOM) killing mechanisms will kick
in. At that point, Android’s in-kernel OOM handler will get called, and it will determine
which processes must be killed to make space.

Put simply, the entirety of Android’s behavior is predicated on low-memory conditions.

If the developer of the app whose process is killed by Android’s OOM handler has
implemented his components’ lifecycles properly, the user shouldn’t see any adverse
behavior. For all practical purposes, in fact, the user shouldn’t even notice that the pro‐
cess housing the app’s components went away and got re-created “automagically” later.

Remote procedure calls (RPCs)

Much like many other components of the system, Android defines its own RPC/IPC
(remote procedure call/inter-process communication) mechanism: Binder. So com‐
munication across components is not typically done using the usual socket or System
V IPC. Instead, components use the in-kernel Binder mechanism, accessible
through /dev/binder, which will be covered later in this chapter.

App developers, however, do not use the Binder mechanism directly. Instead, they must
define and interact with interfaces using Android’s Interface Definition Language (IDL).
Interface definitions are usually stored in an .aidl file and are processed by the aidl tool

App Developer’s View | 29

www.it-ebooks.info

http://www.it-ebooks.info/

to generate the proper stubs and marshaling/unmarshaling code required to transfer
objects and data back and forth using the Binder mechanism.

Framework Intro
In addition to the concepts we just discussed, Android also defines its own development
framework, which allows developers to access functionality typically found in other
development frameworks. Let’s take a brief look at this framework and its capabilities.
User interface

UI elements in Android include traditional widgets such as buttons, text boxes,
dialogs, menus, and event handlers. This part of the API is relatively straightfor‐
ward, and developers usually find their way around it fairly easily if they’ve already
coded for any other UI framework.

All UI objects in Android are built as descendants of the View class and are organized
within a hierarchy of ViewGroups. An activity’s UI can actually be specified either
statically in XML (which is the usual way) or declared dynamically in Java. The UI
can also be modified at runtime in Java if need be. An activity’s UI is displayed when
its content is set as the root of a ViewGroup hierarchy.

Data storage
Android presents developers with several storage options. For simple storage needs,
Android provides shared preferences, which allow developers to store key-value
pairs either in a data set shared by all components of the app or within a specific
separate file. Developers can also manipulate files directly. These files may be stored
privately by the app, so they are inaccessible to other apps, or they can be made
readable and/or writable by other apps. App developers can also use the SQLite
functionality included in Android to manage their own private databases. Such a
database can then be made available to other apps by hosting it within a content
provider component.

Security and permissions
Security in Android is enforced at the process level. In other words, Android relies
on Linux’s existing process isolation mechanisms to implement its own policies. To
that end, every app installed gets its own UID and group identifier (GID). Essen‐
tially, it’s as if every app is a separate “user” in the system. And as in any multiuser
Unix system, these “users” cannot access one another’s resources unless permissions
are explicitly granted to do so. In effect, each app lives in its own separate sandbox.

To exit the sandbox and access key system functionality or resources, apps must
use Android’s permission mechanisms, which require developers to statically de‐
clare the permissions needed by an app in its manifest file. Some permissions, such
as the right to access the Internet (i.e., use sockets), dial the phone, or use the camera,
are predefined by Android. Other permissions can be declared by app developers

30 | Chapter 2: Internals Primer

www.it-ebooks.info

http://www.it-ebooks.info/

and then be required for other apps to interact with a given app’s components. When
an app is installed, the user is prompted to approve the permissions required to run
an app.

Access enforcement is based on per-process operations and requests to access a
specific URI (universal resource identifier), and the decision to grant access to a
specific functionality or resource is based on certificates and user prompts. The
certificates are the ones used by app developers to sign the apps they make available
through Google Play. Hence, developers can restrict access to their apps’ function‐
ality to other apps they themselves created in the past.

The Android development framework provides a lot more functionality, of course, than
can be covered here. I invite you to read up on Android app development elsewhere or
visit http://developer.android.com for more information on 2D and 3D graphics, multi-
media, location and maps, Bluetooth, NFC, etc.

App Development Tools
The typical way to develop Android applications is to use the freely available Android
Software Development Kit (SDK). This SDK—along with Eclipse, its corresponding
Android Development Tools (ADT) plug-in, and the QEMU-based emulator in the SDK
—allows developers to do the vast majority of development work straight from their
workstations. Developers will also usually want to test their apps on real devices prior
to making them available through Google Play, as there are usually runtime behavior
differences between the emulator and actual devices. Some software publishers take this
to the extreme and test their apps on several dozen devices before shipping a new release.

Testing on Several Hundred Devices
Obviously, app developers can’t be expected to have every possible device at their dis‐
posal for testing. A few companies have therefore sprung up to allow app developers to
test their apps on several hundred devices by simply uploading their apps to these com‐
panies’ websites.

These companies typically have a web interface allowing developers to submit their app
for execution on their device farm. Developers are then given detailed reports about
failures and sometimes fairly explicit output from the failed devices’ logs. Have a look
at Apkudo, Bitbar’s Testdroid products, and LessPainful if you need such
functionality.

Interestingly, Apkudo also provides a service to allow you to test devices prior to their
release by running several hundred popular apps on the device to ensure that the AOSP
it runs performs correctly.

App Developer’s View | 31

www.it-ebooks.info

http://developer.android.com
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://www.apkudo.com/
http://testdroid.com/
http://www.lesspainful.com/
http://www.it-ebooks.info/

Even if you don’t plan to develop any apps for your embedded system, I highly suggest
you set up the development environment on your workstation. If nothing else, this will
allow you to validate the effects of modifications you make to the AOSP using basic test
applications. It will also be essential if you plan to extend the AOSP’s API and create
and distribute your own custom SDK.

To set up an app development environment, follow the instructions provided by Google
for the SDK, or have a look at the book Learning Android by Marko Gargenta (O’Reilly).

Native Development
While the majority of apps are developed exclusively in Java using the development
environment we just discussed, certain developers need to run natively compiled code.
To this end, Google has made the Native Development Kit (NDK) available. As adver‐
tised, this is mostly aimed at game developers needing to squeeze every last bit of per‐
formance out of the device their game is running on. As such, the APIs made available
in the NDK are mostly geared toward graphics rendering and sensor input retrieval.
The infamous Angry Birds game, for example, relies heavily on code running natively.

Another possible use of the NDK is obviously to port over an existing codebase to
Android. If you’ve developed a lot of legacy C code over several years (a common sit‐
uation for development houses that have created applications for other mobile devices),
you won’t necessarily want to rewrite it in Java. Instead, you can use the NDK to compile
it for Android and package it with some Java code to use some of the more Android-
specific functionality made available by the SDK. The Firefox browser, for instance,
relies heavily on the NDK to run some of its legacy code on Android.

As I just hinted, the nice thing about the NDK is that you can combine it with the SDK
and therefore have parts of your app in Java and parts of your app in C. That said, it’s
crucial to understand that the NDK gives you access only to a very limited subset of the
Android API. There is, for instance, presently no API allowing you to send an intent
from within C code compiled with the NDK; the SDK must be used to do it in Java
instead. Again, the APIs made available through the NDK are mostly geared toward
game development.

Sometimes embedded and system developers coming to Android expect to be able to
use the NDK to do platform-level work. The word “native” in the NDK can be misleading
in that regard, because the use of the NDK still involves all the limitations and
requirements that apply to Java app developers. So, as an embedded developer,
remember that the NDK is useful for app developers to run native code that they can
call from their Java code. Apart from that, the NDK will be of little to no use for the type
of work you are likely to undertake.

32 | Chapter 2: Internals Primer

www.it-ebooks.info

http://shop.oreilly.com/product/0636920010883.do
http://developer.android.com/tools/sdk/ndk/index.html
http://www.it-ebooks.info/

Overall Architecture
Figure 2-1 is probably one of the most important diagrams presented in this book, and
I suggest you find a way to bookmark its location, as I will often refer back to it, if not
explicitly then implicitly. Although it’s a simplified view—and we will get the chance to
enrich it as we go—it gives a pretty good idea of Android’s architecture and how the
various bits and pieces fit together.

Figure 2-1. Android’s architecture

If you are familiar with some form of Linux development, then the first thing that should
strike you is that beyond the Linux kernel itself, there is little in that stack that resembles
anything typically seen in the Linux or Unix world. There is no glibc, no X Window
System, no GTK, no BusyBox, no bash shell, and so on. Many veteran Linux and em‐
bedded Linux practitioners have indeed noted that Android feels very alien. Though
the Android stack starts from a clean slate with regard to user-space, we will discuss
how to get “legacy” or “classic” Linux applications and utilities to coexist side by side
with the Android stack in Appendix A.

Overall Architecture | 33

www.it-ebooks.info

http://www.it-ebooks.info/

The Google developer documentation presents a different architectural
diagram from that shown in Figure 2-1. The former is likely well suited
for app developers, but it omits key information that must be under‐
stood by embedded developers. For instance, Google’s diagram and de‐
veloper documentation offer little to no reference at the time of this
writing to the System Server. Yet, as an embedded developer, you need
to know what that component is, because it’s one of the most important
parts of Android, and you might need to extend or interact with it
directly.
This is especially important to understand because you’ll see Google’s
diagram presented and copied in several documents and presentations.
If nothing else, remember that the internals and significance of the Sys‐
tem Server are rarely if at all explained to app developers, and that the
bulk of information out there is aimed at app developers, not developers
doing platform work.

Let’s take a deeper look into each part of Android’s architecture, starting from the bottom
of Figure 2-1 and going up. Once we are done covering the various components, we’ll
end this chapter by going over the system’s startup process.

Linux Kernel
The Linux kernel is the centerpiece of all distributions traditionally labeled as “Linux,”
including mainstream distributions such as Ubuntu, Fedora, and Debian. And while
it’s available in “vanilla” form from the Linux Kernel Archives, most distributions apply
their own patches to it to fix bugs and enhance the performance or customize the be‐
havior of certain aspects before distributing it to their users. Android, as such, is no
different in that the Android developers patch the “vanilla” kernel to meet their needs.

Historically, Android differed from standard practice, however, in relying on several
custom functionalities that were significantly different from what was found in the
“vanilla” kernel. In fact, whereas the kernel shipped by a Linux distribution can easily
be replaced by a kernel from kernel.org with little to no impact on the rest of the dis‐
tribution’s components, Android’s user-space components would simply not work un‐
less they were running on an “Androidized” kernel. As I mentioned in the previous
chapter, Android kernels were, up until recently, major forks from the mainline kernel.
As I also mentioned, the situation has since progressed a lot, and many of the features
required to run Android are finding their way into the mainline kernel.

34 | Chapter 2: Internals Primer

www.it-ebooks.info

http://bit.ly/15HLHBZ
http://bit.ly/15HLHBZ
http://kernel.org
http://www.it-ebooks.info/

2. Git is a distributed source code management tool created by Linus Torvalds to manage the kernel sources.
You can find more information about it at http://git-scm.com/.

Hopefully things will have progressed enough by the time you read this
that you can just grab a kernel straight from http://kernel.org and run
the AOSP on top of it. However, if past is prelude and the history of
embedded Linux is an indication of what’s to come, then your best
source for getting a proper, Android-compatible kernel to run on your
hardware is likely going to be the vendor of the SoC you’re using.

Although it’s beyond the scope of this book to discuss the Linux kernel’s internals, let’s
go over the main “Androidisms” added to the kernel. You can get information about the
kernel’s internals by having a look at Robert Love’s Linux Kernel Development, 3rd ed.
(Addison-Wesley Professional, 2010) and starting to follow the Linux Weekly News
(LWN) site. LWN contains several seminal articles on the kernel’s internals and provides
the latest news regarding the Linux kernel’s development.

Note that the following subsections cover only the most important Androidisms. An‐
droidized kernels typically contain several hundred patches over the standard kernel,
often to provide device-specific functionality, fixes, and enhancements. You can use git2

to do an exhaustive analysis of the commit deltas between one of the kernels at http://
android.googlesource.com and the mainline kernel it was forked from. Also, note that
some of the functionality in some Androidized kernels, such as the PMEM driver, is
device-specific and isn’t necessarily used in all Android devices.

Creating Your Own Androidized Kernel
If you’d like to know how to create Androidized kernels from scratch or if you’re tasked
with this, say because you work for an SoC vendor, have a look at the Androidization
of linux kernel blog post by Linaro engineer Vishal Bhoj, published in March 2012. In
this post, Vishal explains how to create an Androidized kernel using the git rebase
command. For more information about that specific command, have a look at the cor‐
responding online git documentation.

Incidentally, Linaro, whose role is to assist its members with platform enablement,
maintains an Androidized kernel that closely follows Linus’s HEAD. For more infor‐
mation on this work, have a look at this thread.

Wakelocks
Of all the Androidisms, this is likely the one that was most contentious. The discussion
threads covering its inclusion in the mainline kernel generated close to 2,000 emails,

Linux Kernel | 35

www.it-ebooks.info

http://git-scm.com/
http://kernel.org
http://lwn.net
http://lwn.net
http://android.googlesource.com
http://android.googlesource.com
http://bit.ly/16e1k5l
http://bit.ly/16e1k5l
http://git-scm.com/book/en/Git-Branching-Rebasing
http://bit.ly/Z5yG1m
http://www.it-ebooks.info/

and even then there was no clear path for merging the wakelock functionality. It was
only after the 2011 Kernel Summit, where kernel developers agreed to merge most
Androidisms into the mainline, that efforts were made to try to rehabilitate the wakelock
mechanism or, as was ultimately decided, to create an equivalent that was more palatable
to the rest of the kernel development community.

As of the end of May 2012, equivalents to the wakelocks and their correlated early
suspend mechanisms have been merged into the mainline kernel. The early suspend
replacement is called autosleep, and the wakelock mechanism has been replaced by a
new epoll() flag called EPOLLWAKEUP. The API is also therefore different from the orig‐
inal functionality added by the Android team, but the resulting functionality is effec‐
tively the same. At the time of this writing, it’s expected that the new versions of the
AOSP would start using the new mechanisms instead of the old ones.

To understand what wakelocks are and do, we must first discuss how power manage‐
ment is typically used in Linux. The most common use case of Linux’s power manage‐
ment is a laptop computer. When the lid is closed on a laptop running Linux, it will
usually go into “suspend” or “sleep” mode. In that mode, the system’s state is preserved
in RAM, but all other parts of the hardware are shut down. Hence, the computer uses
as little battery power as possible. When the lid is raised, the laptop “wakes up,” and the
user can resume using it almost instantaneously.

That modus operandi works fine for laptops and desktop-like devices, but it doesn’t fit
mobile devices such as handsets as well. Hence, Android’s development team devised a
mechanism that changes the rules slightly to make them more palatable for such use
cases. Instead of letting the system be put to sleep at the user’s behest, an Androidized
kernel is made to go to sleep as soon and as often as possible. And to keep the system
from going to sleep while important processing is being done or while an app is waiting
for the user’s input, wakelocks are provided to keep the system awake.

The wakelocks and early suspend functionality are actually built on top of Linux’s ex‐
isting power management functionality. However, they introduce a different develop‐
ment model, since application and driver developers must explicitly grab wakelocks
whenever they conduct critical operations or must wait for user input. Usually, app
developers don’t need to deal with wakelocks directly, because the abstractions they use
automatically take care of the required locking. They can, nonetheless, communicate
with the Power Manager Service if they require explicit wakelocks. Driver developers,
on the other hand, can call on the added in-kernel wakelock primitives to grab and
release wakelocks. The downside of using wakelocks in a driver, however, used to be
that it became impossible to push that driver into the mainline kernel, because the
mainline didn’t include wakelock support. Given the recent inclusion of equivalent
functionality into the mainline, this is no longer an issue.

36 | Chapter 2: Internals Primer

www.it-ebooks.info

http://www.it-ebooks.info/

The following LWN articles describe wakelocks in more detail and ex‐
plain the various issues surrounding their inclusion in the mainline
kernel:

• Wakelocks and the embedded problem
• From wakelocks to a real solution
• Suspend block
• Blocking suspend blockers
• What comes after suspend blockers
• An alternative to suspend blockers
• KS2011: Patch review
• Bringing Android closer to the mainline
• Autosleep and wake locks
• 3.5 merge window part 2

Low-Memory Killer
As mentioned earlier, Android’s behavior is very much predicated on low-memory
conditions. Hence, out-of-memory behavior is crucial. For this reason, the Android
development team has added an additional low-memory killer to the kernel that kicks
in before the default kernel OOM killer. Android’s low-memory killer applies the pol‐
icies described in the app development documentation, weeding out processes hosting
components that haven’t been used in a long time and are not high priority.

Android’s low-memory killer is based on the OOM adjustments mechanism available
in Linux that enables the enforcement of different OOM kill priorities for different
processes. Basically, the OOM adjustments allow the user-space to control part of the
kernel’s OOM killing policies. The OOM adjustments range from −17 to 15, with a
higher number meaning the associated process is a better candidate for being killed if
the system is out of memory.

Android therefore attributes different OOM adjustment levels to different types of pro‐
cesses according to the components they are running and configures its own low-
memory killer to apply different thresholds for each category of process. This effectively
allows it to preempt the activation of the kernel’s own OOM killer—which kicks in only
when the system has no memory left—by kicking in when the given thresholds are
reached, not when the system runs out of memory.

The user-space policies are themselves applied by the init process at startup (see “In‐
it” on page 57), and readjusted and partly enforced at runtime by the Activity Manager
Service, which is part of the System Server. The Activity Manager is one of the most

Linux Kernel | 37

www.it-ebooks.info

http://lwn.net/Articles/318611/
http://lwn.net/Articles/319860/
http://lwn.net/Articles/385103/
http://lwn.net/Articles/388131/
http://lwn.net/Articles/390369/
http://lwn.net/Articles/416690/
http://lwn.net/Articles/464298/
http://lwn.net/Articles/472984/
http://lwn.net/Articles/479841/
http://lwn.net/Articles/498693/
http://www.it-ebooks.info/

3. Greg is one of the top kernel developers and maintainers.

important services in the System Server and is responsible for, among many other things,
carrying out the component lifecycle presented earlier.

Have a look at the Taming the OOM killer LWN article if you’d like to
get more information regarding the kernel’s OOM killer and how An‐
droid traditionally builds on it.

At the time of this writing, Android’s low-memory killer is found in the kernel’s staging
tree along with many of the other Android-specific drivers. Work is currently under
way to rewrite this functionality within a more general framework for low-memory
conditions. Have a look at the Userspace low memory killer daemon post to the Linux
Kernel Mailing List (LKML) and the linux-vmevent patch for a glimpse of what’s cur‐
rently being worked on. Essentially, the goal is to move the decision process about what
to do in low-memory conditions to a daemon in user-space.

Android and the Linux Staging Tree
At the time of this writing, many of the drivers required to run Android have been
merged into the staging tree. While this means they are still found in mainline kernels
available at http://kernel.org, it also means that kernel developers believe those drivers
require work before being considered mature enough to be merged alongside the “clean”
set of drivers found in the rest of the kernel tree.

Specifically, many Android drivers are currently found in the drivers/staging/android
directory of the kernel. They should remain there until they have been refactored or
rewritten to suit the criteria for them to be admitted as official Linux drivers into the
relevant location within the drivers/ directory.

If you aren’t familiar with the staging tree, have a look at Greg Kroah-Hartman’s3 The
Linux Staging Tree, what it is and is not blog post from March 2009: “The Linux Staging
tree (or just ‘staging’ from now on) is used to hold standalone drivers and filesystems
that are not ready to be merged into the main portion of the Linux kernel tree at this
point in time for various technical reasons. It is contained within the main Linux kernel
tree so that users can get access to the drivers much easier than before, and to provide
a common place for the development to happen, resolving the ‘hundreds of different
download sites’ problem that most out-of-tree drivers have had in the past.”

38 | Chapter 2: Internals Primer

www.it-ebooks.info

http://lwn.net/Articles/317814/
http://lwn.net/Articles/511731/
http://git.infradead.org/users/cbou/linux-vmevent.git
http://kernel.org
http://www.kroah.com/log/linux/linux-staging-update.html
http://www.kroah.com/log/linux/linux-staging-update.html
http://www.it-ebooks.info/

Binder
Binder is an RPC/IPC mechanism akin to COM under Windows. Its roots actually date
back to work done within BeOS prior to Be’s assets being bought by Palm. It continued
life within Palm, and the fruits of that work were eventually released as the OpenBind‐
er project. Though OpenBinder never survived as a standalone project, a few key de‐
velopers who had worked on it, such as Dianne Hackborn and Arve Hjønnevåg, even‐
tually ended up working on the Android development team.

Android’s Binder mechanism is therefore inspired by that previous work, but Android’s
implementation does not derive from the OpenBinder code. Instead, it’s a clean-room
rewrite of a subset of the OpenBinder functionality. The OpenBinder Documentation
remains a must-read if you want to understand the mechanism’s underpinnings and its
design philosophy, and so is Dianne Hackborn’s explanation on the LKML of how the
Binder is used in Android.

In essence, Binder attempts to provide remote object invocation capabilities on top of
a classic OS. In other words, instead of reengineering traditional OS concepts, Binder
“attempts to embrace and transcend them.” Hence, developers get the benefits of dealing
with remote services as objects without having to deal with a new OS. It therefore be‐
comes very easy to extend a system’s functionality by adding remotely invocable objects
instead of implementing new daemons for providing new services, as would usually be
the case in the Unix philosophy. The remote object can therefore be implemented in
any desired language and may share the same process space as other remote services or
have its own separate process. All that is needed to invoke its methods is its interface
definition and a reference to it.

And as you can see in Figure 2-1, Binder is a cornerstone of Android’s architecture. It’s
what allows apps to talk the System Server, and it’s what apps use to talk to each others’
service components, although, as I mentioned earlier, app developers don’t actually talk
to the Binder directly. Instead, they use the interfaces and stubs generated by the aidl
tool. Even when apps interface with the System Server, the android.* APIs abstract its
services, and the developer never actually sees that Binder is being used.

Linux Kernel | 39

www.it-ebooks.info

http://www.angryredplanet.com/~hackbod/openbinder/
http://lkml.org/lkml/2009/6/25/3
http://www.it-ebooks.info/

Though they sound semantically similar, there is a very big difference
between services running within the System Server and services ex‐
posed to other apps through the “service” component model I intro‐
duced in “Components” on page 26 as being one of the components
available to app developers. Most importantly, service components are
subject to the same system mechanics as any other component. Hence,
they are lifecycle-managed and run within the same privilege sandbox
associated with the app they are part of. Services running within the
System Server, on the other hand, typically run with system privileges
and live from boot to reboot. The only things these two types of services
share are: a) their name, and b) the use of Binder to interact with them.

The in-kernel driver part of the Binder mechanism is a character driver accessible
through /dev/binder. It’s used to transmit parcels of data between the communicating
parties using calls to ioctl(). It also allows one process to designate itself as the “Context
Manager.” The importance of the Context Manager, along with the actual user-space
use of the Binder driver, will be discussed in more detail later in this chapter.

Since the 3.3 release of the Linux kernel, the Binder driver has been merged into the
staging tree. There is currently no project under way to clean this driver up or to rewrite
it to make it applicable and/or useful for more general-purpose use in standard Linux
desktop and server systems. It’s therefore likely to remain in drivers/staging/android/
for the foreseeable future.

Anonymous Shared Memory (ashmem)
Another IPC mechanism available in most OSes is shared memory. In Linux, this is
usually provided by the POSIX SHM functionality, part of the System V IPC mecha‐
nisms. If you look at the bionic/libc/docs/SYSV-IPC.TXT file included in the AOSP,
however, you’ll discover that the Android development team seems to have a dislike for
SysV IPC. Indeed, the argument is made in that file that the use of SysV IPC mechanisms
in Linux can lead to resource leakage within the kernel, opening the door for malicious
or misbehaving software to cripple the system.

Though it isn’t stated as such by Android developers or any of the documentation within
the ashmem code or surrounding its use, ashmem very likely owes part of its existence
to SysV IPC’s shortcomings as seen by the Android development team. Ashmem is
therefore described as being similar to POSIX SHM “but with different behavior.” For
instance, it uses reference counting to destroy memory regions when all processes re‐
ferring to them have exited, and will shrink mapped regions if the system is in need of
memory. “Unpinning” a region allows it to be shrunk, whereas “pinning” a region dis‐
allows the shrinking.

40 | Chapter 2: Internals Primer

www.it-ebooks.info

http://www.it-ebooks.info/

Typically, a first process creates a shared memory region using ashmem, and uses Binder
to share the corresponding file descriptor with other processes with which it wishes to
share the region. Dalvik’s JIT code cache, for instance, is provided to Dalvik instances
through ashmem. A lot of System Server components, such as the Surface Flinger and
the Audio Flinger, rely on ashmem—through the IMemory interface, rather than directly.

IMemory is an internal interface available only within the AOSP, not to
app developers. The closest class exposed to app developers is Memory
File.

At the time of this writing, the ashmem driver is included in the mainline’s drivers/
staging/android/ directory and is slated for rewriting.

Alarm
The alarm driver added to the kernel is another case where the default kernel function‐
ality wasn’t sufficient for Android’s requirements. Android’s alarm driver is actually
layered on top of the kernel’s existing Real-Time Clock (RTC) and High-Resolution
Timers (HRT) functionalities. The kernel’s RTC functionality provides a framework for
driver developers to create board-specific RTC functions, while the kernel exposes a
single hardware-independent interface through the main RTC driver. The kernel HRT
functionality, on the other hand, allows callers to get woken up at very specific points
in time.

In “vanilla” Linux, application developers typically call the setitimer() system call to
get a signal when a given time value expires; for more information, see the setitim
er()’s man page. The system call allows for a handful of types of timers, one of which,
ITIMER_REAL, uses the kernel’s HRT. This functionality, however, doesn’t work when the
system is suspended. In other words, if an application uses setitimer() to request being
woken up at a given time and then in the interim the device is suspended, that application
will get its signal only when the device is woken up again.

Separately from the setitimer() system call, the kernel’s RTC driver is accessible
through /dev/rtc and enables its users to use an ioctl() to, among other things, set an
alarm that will be activated by the RTC hardware device in the system. That alarm will
fire off whether the system is suspended or not, since it’s predicated on the behavior of
the RTC device, which remains active even when the rest of the system is suspended.

Android’s alarm driver cleverly combines the best of both worlds. By default, the driver
uses the kernel’s HRT functionality to provide alarms to its users, much like the kernel’s
own built-in timer functionality. However, if the system is about to suspend itself, it
programs the RTC so that the system gets woken up at the appropriate time. Hence,
whenever an application from user-space needs a specific alarm, it just needs to use

Linux Kernel | 41

www.it-ebooks.info

http://www.it-ebooks.info/

Android’s alarm driver to be woken up at the appropriate time, regardless of whether
the system is suspended in the interim.

From user-space, the alarm driver appears as the /dev/alarm character device and allows
its users to set up alarms and adjust the system’s time (wall time) through ioctl() calls.
There are a few key AOSP components that rely on /dev/alarm. For instance, Toolbox
and the SystemClock class, available through the app development API, rely on it to
set/get the system’s time. Most importantly, though, the Alarm Manager service part of
the System Server uses it to provide alarm services to apps that are exposed to app
developers through the AlarmManager class.

Both the driver and Alarm Manager use the wakelock mechanism wherever appropriate
to maintain consistency between alarms and the rest of Android’s wakelock-related
behavior. Hence, when an alarm is fired, its consuming app gets the chance to do
whatever operation is required before the system is allowed to suspend itself again, if
need be.

At the time of this writing, Android’s alarm driver is in the kernel’s staging tree with
upstreaming work pending.

Logger
Logging is another essential component of any Linux system, embedded ones included.
Being able to analyze a system’s logs for errors or warnings either postmortem or in real
time can be vital to isolate fatal errors, especially transient ones. By default, most Linux
distributions include two logging systems: the kernel’s own log, typically accessed
through the dmesg command, and the system logs, typically stored in files in
the /var/log directory. The kernel’s log usually contains the messages printed out by the
various printk() calls made within the kernel, either by core kernel code or by device
drivers. For their part, the system logs contain messages coming from various daemons
and utilities running in the system. In fact, you can use the logger command to send
your own messages to the system log.

With regard to Android, the kernel’s logging functionality is used as is. However, none
of the usual system logging software packages typically found in most Linux distribu‐
tions are found in Android. Instead, Android defines its own logging mechanisms based
on the Android logger driver added to the kernel. The classic syslog relies on sending
messages through sockets, and therefore generates a task switch. It also uses files to store
its information, therefore generating writes to a storage device. In contrast, Android’s
logging functionality manages a handful of separate kernel-hosted buffers for logging
data coming from user-space. Hence, no task-switches or file-writes are required for
each event being logged. Instead, the driver maintains circular buffers in RAM where
it logs every incoming event and returns immediately back to the caller.

42 | Chapter 2: Internals Primer

www.it-ebooks.info

http://www.it-ebooks.info/

There are numerous benefits to avoiding file-writes in the settings in which Android is
used. For example, unlike in a desktop or server environment, it isn’t necessarily desir‐
able to have a log that grows indefinitely in an embedded system. It’s also desirable to
have a system that enables logging even though the filesystem types used may be read-
only. Furthermore, most Android devices rely on solid-state storage devices, which have
a limited number of erase cycles. Avoiding superfluous writes is crucial in those cases.

Because of its lightweight, efficient, and embedded-system-friendly design, Android’s
logger can actually be used by user-space components at runtime to regularly log events.
In fact, the Log class available to app developers more or less directly invokes the logger
driver to write to the main event buffer. Obviously, all good things can be abused, and
it’s preferable to keep the logging light, but still the level of use made possible by exposing
Log through the app API, along with the level of use of logging within the AOSP itself,
likely would have been very difficult to sustain had Android’s logging been based on
syslog.

Figure 2-2 describes Android’s logging framework in more detail. As you can see, the
logger driver is the core building block on which all other logging-related functionality
relies. Each buffer it manages is exposed as a separate entry within /dev/log/. However,
no user-space component directly interacts with that driver. Instead, they all rely on
liblog, which provides a number of different logging functions. Depending on the func‐
tions being used and the parameters being passed, events will get logged to different
buffers. The liblog functions used by the Log and Slog classes, for instance, will test
whether the event being dispatched comes from a radio-related module. If so, the event
is sent to the “radio” buffer. If not, the Log class will send the event to the “main” buffer,
whereas the Slog class will send it to the “system” buffer. The “main” buffer is the one
whose events are shown by the logcat command when it’s issued without any parameters.

Linux Kernel | 43

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-2. Android’s logging framework

Both the Log and EventLog classes are exposed through the app development API, while
Slog is for internal AOSP use only. Despite being available to app developers, though,
EventLog is clearly identified in the documentation as mainly for system integrators,
not app developers. In fact, the vast majority of code samples and examples provided
as part of the developer documentation use the Log class. Typically, EventLog is used by
system components to log binary events to the Android’s “events” buffer. Some system
components, especially System Server−hosted services, will use a combination of Log,
Slog, and EventLog to log different events. An event that might be relevant to app
developers, for instance, might be logged using Log, while an event relevant to platform
developers or system integrators might be logged using either Slog or EventLog.

Note that the logcat utility, which is commonly used by app developers to dump the
Android logs, also relies on liblog. In addition to providing access functions to the logger
driver, liblog also provides functionality for formatting events for pretty printing and
filtering. Another feature of liblog is that it requires every event being logged to have a
priority, a tag, and data. The priority is either verbose, debug, info, warn, or error. The
tag is a unique string that identifies the component or module writing to the log, and
the data is the actual information that needs to be logged. This description should in
fact sound fairly familiar to anyone exposed to the app development API, as this is
exactly what’s spelled out by the developer documentation for the Log class.

44 | Chapter 2: Internals Primer

www.it-ebooks.info

http://www.it-ebooks.info/

The final piece of the puzzle here is the adb command. As we’ll discuss later, the AOSP
includes an Android Debug Bridge (ADB) daemon that runs on the Android device
and that is accessed from the host using the adb command-line tool. When you type
adb logcat on the host, the daemon actually launches the logcat command locally on the
target to dump its “main” buffer and then transfers that back to the host to be shown
on the terminal.

At the time of this writing, the logger driver has been merged into the kernel’s drivers/
staging/android/ directory. Have a look at the Mainline Android logger project for more
information regarding the state of this driver’s mainlining.

Other Notable Androidisms
A few other Androidisms, in addition to those already covered, are worth mentioning,
even if I don’t cover them in much detail.
Paranoid networking

Usually in Linux, all processes are allowed to create sockets and interact with the
network. Per Android’s security model, however, access to network capabilities has
to be controlled. Hence, an option is added to the kernel to gate access to socket
creation and network interface administration based on whether the current pro‐
cess belongs to a certain group of processes or possesses certain capabilities. This
applies to IPv4, IPv6, and Bluetooth.

At the time of this writing, this functionality hasn’t been merged into the mainline,
and the path for its inclusion is unclear. You could run an AOSP on a kernel that
doesn’t have this functionality, but Android’s permission system, especially with
regard to socket creation, would be broken.

RAM console
As I mentioned earlier, the kernel manages its own log, which you can access using
the dmesg command. The content of this log is very useful, as it often contains
critical messages from drivers and kernel subsystems. On a crash or a kernel panic,
its content can be instrumental for postmortem analysis. Since this information is
typically lost on reboot, Android adds a driver that registers a RAM-based console
that survives reboots and makes its content accessible through /proc/last_kmsg.

At the time of this writing, the RAM console’s functionality seems to have been
merged into mainline within the pstore filesystem in the kernel’s fs/pstore/ directory.

Physical memory (pmem)
Like ashmem, the pmem driver allows for sharing memory between processes.
However, unlike ashmem, it allows the sharing of large chunks of physically con‐
tiguous memory regions, not virtual memory. In addition, these memory regions
may be shared between processes and drivers. For the G1 handset, for instance,
pmem heaps are used for 2D hardware acceleration. Note, though, that pmem was

Linux Kernel | 45

www.it-ebooks.info

http://elinux.org/Mainline_Android_logger_project
http://www.it-ebooks.info/

used in very few devices. In fact, according to Brian Swetland, one of the Android
kernel development team members, it was written to specifically address the
MSM7201A’s limitations, the MSM7201A being the SoC in the G1.

At the time of this writing, this driver is considered obsolete and has been dropped.
It isn’t found in the mainline kernel, and there are no plans to revive it. It appears
that the ION memory allocator is poised to replace whatever uses pmem had.

Hardware Support
Android’s hardware support approach is significantly different from the classic ap‐
proach typically found in the Linux kernel and Linux-based distributions. Specifically,
the way hardware support is implemented, the abstractions built on that hardware sup‐
port, and the mind-set surrounding the licensing and distribution of the resulting code
are all different.

The Linux Approach
The usual way to provide support for new hardware in Linux is to create device drivers
that are either built as part of the kernel or loaded dynamically at runtime through
modules. The corresponding hardware is thereafter generally accessible in user-space
through entries in /dev. Linux’s driver model defines three basic types of devices: char‐
acter devices (devices that appear as a stream of bytes), block devices (essentially hard
disks), and networking devices. Over the years, quite a few additional device and sub‐
system types have been added, such as for USB or Memory Technology Device (MTD)
devices. Nevertheless, the APIs and methods for interfacing with the /dev entry corre‐
sponding to a given type of device have remained fairly standardized and stable.

This has allowed various software stacks to be built on top of /dev nodes either to interact
with the hardware directly or to expose generic APIs that are used by user applications
to provide access to the hardware. The vast majority of Linux distributions in fact ship
with a similar set of core libraries and subsystems, such as the ALSA audio libraries and
the X Window System, to interface with hardware devices exposed through /dev.

With regard to licensing and distribution, the general “Linux” approach has always been
that drivers should be merged and maintained as part of the mainline kernel and dis‐
tributed with it under the terms of the GPL. So, while some device drivers are developed
and maintained independently and some are even distributed under other licenses, the
consensus has been that this isn’t the preferred approach. In fact, with regard to licens‐
ing, non-GPL drivers have always been a contentious issue. Hence, the conventional
wisdom is that users’ and distributors’ best bet for getting the latest drivers is usually to
get the latest mainline kernel from http://kernel.org. This has been true since the kernel’s
early days and remains true despite some additions having been made to the kernel to
allow the creation of user-space drivers.

46 | Chapter 2: Internals Primer

www.it-ebooks.info

http://lwn.net/Articles/480055/
http://kernel.org
http://www.it-ebooks.info/

Android’s General Approach
Although Android builds on the kernel’s hardware abstractions and capabilities, its
approach is very different. On a purely technical level, the most glaring difference is
that its subsystems and libraries don’t rely on standard /dev entries to function properly.
Instead, the Android stack typically relies on shared libraries provided by manufacturers
to interact with hardware. In effect, Android relies on what can be considered a Hard‐
ware Abstraction Layer (HAL), although, as we will see, the interface, behavior, and
function of abstracted hardware components differ greatly from type to type.

In addition, most software stacks typically found in Linux distributions to interact with
hardware are not found in Android. There is no X Window System, for instance, and
while ALSA drivers are sometimes used—a decision left up to the hardware manufac‐
turer who provides the shared library implementing audio support for the HAL—access
to their functionality is different from that on standard Linux distributions. The ALSA
libraries typically used in Linux desktop environments to interface with ALSA drivers,
for example, aren’t used in the official AOSP tree. Instead, recent Android releases in‐
clude a BSD-licensed tinyalsa library as a replacement.

Figure 2-3 presents the typical way in which hardware is abstracted and supported in
Android, along with the corresponding distribution and licensing. As you can see, An‐
droid still ultimately relies on the kernel to access the hardware. However, this is done
through shared libraries that are either implemented by the device manufacturer or
provided as part of the AOSP. Generally speaking, you can consider the HAL layer as
being the hardware library loader shown in the diagram, along with the header files
defining the various hardware types, with those same header files being used as the API
definitions for the hardware library .so files.

Hardware Support | 47

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-3. Android’s “Hardware Abstraction Layer”

One of the main features of this approach is that the license under which the shared
library is distributed is up to the hardware manufacturer. Hence, a device manufacturer
can create a simplistic device driver that implements the most basic primitives to access
a given piece of hardware and make that driver available under the GPL. Not much
would be revealed about the hardware, since the driver wouldn’t do anything fancy. That
driver would then expose the hardware to user-space through mmap() or ioctl(), and
the bulk of the intelligence would be implemented within a proprietary shared library
in user-space that uses those functions to drive the hardware.

Android does not in fact specify how the shared library and the driver or kernel sub‐
system should interact. Only the API provided by the shared library to the upper layers
is specified by the HAL. Hence, it’s up to you to determine the specific driver interface
that best fits your hardware, so long as the shared library you provide implements the
appropriate API. Nevertheless, we will cover the typical methods used by Android to
interface to hardware in the next section.

Where Android is relatively inconsistent is the way the hardware-supporting shared
libraries are loaded by the upper layers. Remember for now that for most hardware
types, there has to be a .so file that is either provided by the AOSP or that you must
provide for Android to function properly.

No matter which mechanism is used to load a hardware-supporting shared library, a
system service corresponding to the type of hardware is typically responsible for loading
and interfacing with the shared library. That system service will be responsible for

48 | Chapter 2: Internals Primer

www.it-ebooks.info

http://www.it-ebooks.info/

interacting and coordinating with the other system services to make the hardware be‐
have coherently with the rest of the system and the APIs exposed to app developers. If
you’re adding support for a given type of hardware, it’s therefore crucial that you try to
understand in as much detail as possible the internals of the system service correspond‐
ing to your hardware. Usually, the system service will be split in two parts: one part in
Java that implements most of the Android-specific intelligence, and another part in C/
C++ whose main job is to interact with the HAL, the hardware-supporting shared li‐
brary and other low-level functions.

Loading and Interfacing Methods
As I mentioned earlier, there are various ways in which system services and Android in
general interact with the shared libraries implementing hardware support and hardware
devices in general. It’s difficult to fully understand why there is such a variety of methods,
but I suspect that some of them evolved organically. Luckily, there seems to be a move‐
ment toward a more uniform way of doing things. Given that Android moves at a fairly
rapid pace, this is one area that will require keeping an eye on for the foreseeable future,
as it’s likely to evolve.

Note that the methods described here are not necessarily mutually exclusive. Often a
combination of these is used within the Android stack to load and interface with a shared
library or some software layer before or after it. I’ll cover specific hardware in the next
section.
dlopen()-loading through HAL

Applies to: GPS, Lights, Sensors, and Display. Also applies to Audio and Camera
starting from 4.0/Ice-Cream Sandwich.

Some hardware-supporting shared libraries are loaded by the libhardware library.
This library is part of Android’s HAL and exposes hw_get_module(), which is used
by some system services and subsystems to explicitly load a given specific hardware-
supporting shared library (a.k.a. a “module” in HAL terminology). hw_get_mod
ule() in turn relies on the classic dlopen() to load libraries into the caller’s address
space.

HAL “modules” shouldn’t be confused with loadable kernel mod‐
ules, which are a completely different and unrelated software con‐
struct, even though they share some similar properties.

Hardware Support | 49

www.it-ebooks.info

http://www.it-ebooks.info/

Linker-loaded .so files
Applies to: Audio, Camera, Wifi, Vibrator, and Power Management

In some cases, system services are simply linked against a given .so file at build time.
Hence, when the corresponding binary is run, the dynamic linker automatically
loads the shared library into the process’s address space.

Hardcoded dlopen()s
Applies to: StageFright and Radio Interface Layer (RIL)

In a few cases, the code invokes dlopen() directly instead of going through lib
hardware to fetch a hardware-enabling shared library. The rationale for using this
method instead of the HAL is unclear.

Sockets
Applies to: Bluetooth, Network Management, Disk Mounting, and Radio Interface
Layer (RIL)

Sockets are sometimes used by system services or framework components to talk
to a remote daemon or service that actually interacts with the hardware.

Sysfs entries
Applies to: Vibrator and Power Management

Some entries in sysfs (/sys) can be used to control the behavior of hardware and/or
kernel subsystems. In some cases, Android uses this method instead of /dev entries
to control the hardware. Use of sysfs entries instead of /dev nodes makes sense, for
instance, when defaults need to be set during system initialization when no part of
the framework is yet running.

/dev nodes
Applies to: Almost every type of hardware

Arguably, any hardware abstraction must at some point communicate with an entry
in /dev, because that’s how drivers are exposed to user-space. Some of this com‐
munication is likely hidden from Android itself because it interacts with a shared
library instead, but in some corner cases AOSP components directly access device
nodes. Such is the case of input libraries used by the Input Manager.

D-Bus
Applies to: Bluetooth

D-Bus is a classic messaging system found in most Linux distributions for facili‐
tating communication between various desktop components. It’s included in An‐
droid because it’s the prescribed way for a non-GPL component to talk to the GPL-
licensed BlueZ stack—Linux’s default Bluetooth stack and the one used in Android
—without being subject to the GPL’s redistribution requirements; D-Bus itself being
dual-licensed under the Academic Free License (AFL) and the GPL. Have a look at
freedesktop.org’s D-Bus page for more information.

50 | Chapter 2: Internals Primer

www.it-ebooks.info

http://dbus.freedesktop.org
http://www.it-ebooks.info/

Given that BlueZ has been removed from the AOSP starting with 4.2/Jelly Bean, it’s
unclear what uses D-Bus will have, if any, in future Android releases.

Device Support Details
Table 2-1 summarizes the way in which each type of hardware is supported in Android.
As you’ll notice, there is a wide variety of combinations of mechanisms and interfaces.
If you plan on implementing support for a specific type of hardware, the best way for‐
ward is to start from an existing sample implementation. The AOSP typically includes
hardware support code for a few handsets, generally those that were used by Google to
develop new Android releases and therefore served as lead devices. Sometimes the
sources for hardware support are quite extensive, as was the case for the Samsung
Nexus S (a.k.a. “Crespo,” its code name) in Gingerbread, and the Galaxy Nexus (a.k.a.
“Maguro”) and the Nexus 7 (a.k.a. “Grouper”) in Jelly Bean.

The only type of hardware for which you are unlikely to find publicly available imple‐
mentations on which to base your own is the RIL. For various reasons, it’s best not to
let everyone be able to play with the airwaves. Hence, manufacturers don’t make such
implementations available. Instead, Google provides a reference RIL implementation
in the AOSP should you want to implement a RIL.

Table 2-1. Android’s hardware support methods and interfaces
Hardware System Service Interface to User-Space Hardware

Support
Interface to Hardware

Audio Audio Flinger Linker-loadeda libaudio.so Up to hardware manufacturer,
though ALSA is typical

Bluetooth Bluetooth Service Socket/D-Bus to BlueZb BlueZ stack

Camera Camera Service Linker-loadedc libcamera.so Up to hardware manufacturer,
sometimes Video4Linux

Display Surface Flinger HAL-loaded gralloc moduled Up to hardware
manufacturer, /dev/fb0
or /dev/graphics/fb0

GPS Location Manager HAL-loaded gps module Up to hardware manufacturer

Input Input Manager Native libui.so librarye Entries in /dev/input/

Lights Lights Service HAL-loaded lights module Up to hardware manufacturer

Media N/A, StageFright
framework within Media
Service

dlopen on libstagefrighthw.so Up to hardware manufacturer

Network interfacesf Network Management
Service

Socket to netd ioctl() on interfaces

Power management Power Manager Service Linker-loaded libhardware_legacy.so Entries in /sys/power/ or, in
older days, /sys/
android_power/

Hardware Support | 51

www.it-ebooks.info

http://www.it-ebooks.info/

Hardware System Service Interface to User-Space Hardware
Support

Interface to Hardware

Radio (Phone) Phone Service Socket to rild, which itself does a
dlopen()on manufacturer-
provided .so

Up to hardware manufacturer

Storage Mount Service Socket to vold System calls and /sys entries

Sensors Sensor Service HAL-loaded sensors module Up to hardware manufacturer

Vibrator Vibrator Service Linker-loaded libhardware_legacy.so Up to hardware manufacturer

WiFi Wifi Service Linker-loaded libhardware_legacy.so Classic wpa_supplicantg in most
cases

a This is HAL-loaded starting with 4.0/Ice-Cream Sandwich.
b BlueZ has been removed starting with 4.2/Jelly Bean. A Broadcom-supplied Bluetooth stack called bluedroid has replaced it. The
new Bluetooth stack relies on HAL-loading like most other hardware types.
c This is HAL-loaded starting with 4.0/Ice-Cream Sandwich.
d The module used by the Surface Flinger is hwcomposer starting with 4.0/Ice-Cream Sandwich
e This has been replaced by the libinput.so library starting with 4.0/Ice-Cream Sandwich.
f This is for Tether, NAT, PPP, PAN, USB RNDIS (Windows). It isn’t for WiFi.
g wpa_supplicant is the same software package used on any Linux desktop to manage WiFi networks and connections.

Native User-Space
Now that we’ve covered the low-level layers on which Android is built, let’s start going
up the stack. First off, we’ll cover the native user-space environment in which Android
operates. By “native user-space,” I mean all the user-space components that run outside
the Dalvik virtual machine. This includes quite a few binaries that are compiled to run
natively on the target’s CPU architecture. These are generally started either automati‐
cally or as needed by the init process according to its configuration files, or are available
to be invoked from the command line once a developer shells into the device. Such
binaries usually have direct access to the root filesystem and the native libraries included
in the system. Their capabilities are restricted only by the filesystem rights granted to
them and their effective UID and GID. They aren’t subject to any of the restrictions
imposed on a typical Android app by the Android Framework because they are running
outside it.

Note that Android’s user-space was designed pretty much from a blank slate and differs
greatly from what you’d find in a standard Linux distribution. Hence, I will try as much
as possible to explain where Android’s user-space is different from or similar to what
you’d usually find in a Linux-based system.

52 | Chapter 2: Internals Primer

www.it-ebooks.info

http://www.it-ebooks.info/

4. The FHS is a community standard that describes the contents and use of the various directories within a
Linux root filesystem.

Filesystem Layout
Like any other Linux-based distribution, Android uses a root filesystem to store appli‐
cations, libraries, and data. Unlike the vast majority of Linux-based distributions, how‐
ever, the layout of Android’s root filesystem does not adhere to the Filesystem Hierarchy
Standard (FHS).4 The kernel itself doesn’t enforce the FHS, but most software packages
built for Linux assume that the root filesystem they are running on conforms to the
FHS. Hence, if you intend to port a standard Linux application to Android, you’ll likely
need to do some legwork to ensure that the filepaths it relies on are still valid, or use
some form of “chroot jail” to isolate it and its supporting packages from the rest of the
root filesystem (see chroot’s man page for details).

Given that most of the packages running in Android’s user-space were written from
scratch specifically for Android, this lack of conformity is of little to no consequence to
Android itself. In fact, it has some benefits, as we’ll see shortly. Still, it’s important to
learn how to navigate Android’s root filesystem. If nothing else, you’ll likely have to
spend quite some time inside it as you bring Android up on your hardware or customize
it for that hardware.

The two main directories in which Android operates are /system and /data. These di‐
rectories do not emanate from the FHS. In fact, I can’t think of any mainstream Linux
distribution that uses either of these directories. Rather, they reflect the Android de‐
velopment team’s own design. This is one of the first signs hinting that it might be
possible to host Android side by side with a common Linux distribution on the same
root filesystem. Have a look at Appendix A for more information on how to create such
a hybrid.

/system is the main Android directory for storing immutable components generated by
the build of the AOSP. This includes native binaries, native libraries, framework pack‐
ages, and stock apps. It’s usually mounted read-only from a separate image from the
root filesystem, which is itself mounted from a RAM disk image. /data, on the other
hand, is Android’s main directory for storing data and apps that change over time. This
includes the data generated and stored by apps installed by the user alongside data
generated by Android system components at runtime. It, too, is usually mounted from
its own separate image, though in read-write mode.

Android also includes many directories commonly found in any Linux system, such
as /dev, /proc, /sys, /sbin, /root, /mnt, and /etc. These directories often serve similar if
not identical purposes to the ones they serve on any Linux system, although they are
very often trimmed down, as is the case of /sbin and /etc, and in some cases are empty,
such as /root.

Native User-Space | 53

www.it-ebooks.info

http://www.pathname.com/fhs/
http://www.it-ebooks.info/

Interestingly, Android doesn’t include any /bin or /lib directories. These directories are
typically crucial in a Linux system, containing, respectively, essential binaries and es‐
sential libraries. This is yet another artifact that opens the door for making Android
coexist with standard Linux components.

There is of course more to be said about Android’s root filesystem. The directories just
mentioned, for instance, contain their own hierarchies. Also, Android’s root filesystem
contains other directories I haven’t covered here. We will revisit the Android root file‐
system and its makeup in more detail in Chapter 6.

Libraries
Android relies on about 100 dynamically loaded libraries, all stored in the /system/lib
directory. A certain number of these come from external projects that were merged into
Android’s codebase to make their functionality available within the Android stack, but
a large portion of the libraries in /system/lib are actually generated from within the AOSP
itself. Table 2-2 lists the libraries included in the AOSP that come from external projects,
whereas Table 2-3 summarizes the Android-specific libraries generated from within the
AOSP.

Table 2-2. Libraries generated from external projects imported into the AOSP
Library(ies) External Project Original Location License

audio.so, liba2dp, input.so,
libbluetooth and libblue
toothd

BlueZa http://www.bluez.org GPL

libcrypto.so and libssl.so OpenSSL http://www.openssl.org Custom, BSD-like

libdbus.so D-Bus http://dbus.freedesktop.org AFL and GPL

libexif.sob Exif JPEG header manipulation
tool

http://www.sentex.net/~mwan
del/jhead/

Public Domain

libexpat.so Expat XML Parser http://expat.sourceforge.net MIT

libFFTEm.so neven face recognition library N/A ASL

libicui18n.so and libicuuc.so International Components for
Unicode

http://icu-project.org MIT

libiprouteutil.so and libnet
link.so

iproute2 TCP/IP networking and
traffic control

http://www.linuxfoundation.org/
collaborate/workgroups/network
ing/iproute2

GPL

libjpeg.so libjpeg http://www.ijg.org Custom, BSD-like

libnfc_ndef.so NXP Semiconductor’s NFC library N/A ASL

libskia.so and, in 2.3/
Gingerbread, libskiagl.so

skia 2D graphics library http://code.google.com/p/skia/ ASL

libsonivox Sonic Network’s Audio Synthesis
library

N/A ASL

54 | Chapter 2: Internals Primer

www.it-ebooks.info

http://www.bluez.org
http://www.openssl.org
http://dbus.freedesktop.org
http://www.sentex.net/~mwandel/jhead/
http://www.sentex.net/~mwandel/jhead/
http://expat.sourceforge.net
http://icu-project.org
http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2
http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2
http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2
http://www.ijg.org
http://code.google.com/p/skia/
http://www.it-ebooks.info/

Library(ies) External Project Original Location License

libsqlite.so SQLite database http://www.sqlite.org Public domain

libSR_AudioIn.so and, in 2.3/
Gingerbread, libsrec_jni.so

Nuance Communications’ Speech
Recognition engine

N/A ASL

libstlport.so Implementation of the C++
Standard Template Library

http://stlport.sourceforge.net Custom, BSD-like

libttspico.so SVOX’s Text-to-Speech speech
synthesizer engine

N/A ASL

libvorbisidec.so Tremolo ARM-optimized Ogg
Vorbis decompression library

http://wss.co.uk/pinknoise/tremo
lo/

Custom, BSD-like

libwebcore.so WebKit Open Source Project http://www.webkit.org LGPL and BSD

libwpa_client.so Library used by legacy HAL to talk
to wpa_supplicant daemon

http://hostap.epitest.fi/
wpa_supplicant/

GPL and BSD

libz.so zlib compression library http://zlib.net Custom, BSD-like
a BlueZ has been replaced by an ASL-licensed, Broadcom-supplied Bluetooth stack called bluedroid that is also found in exter
nal/. The libraries generated by bluedroid are different from those listed here.
b Note that Android’s libexif.so’s API is very different from that library’s API as available in traditional Linux distributions.

Table 2-3. Android-specific libraries generated from within the AOSP
Category Library(ies) Description

Bionic libc.so C library

libm.so Math library

libdl.so Dynamic linking library

libstdc++.so C++ support librarya

libthread_db.so Thread debugging library

Coreb libbinder.so The Binder library

libutils.so, libcutils.so, libnetutils.so, and lib
sysutils.so

Various utility libraries

libsystem_server.so, libandroid_servers.so,
libaudioflinger.so, libsurfaceflinger.so, lib
sensorservice.so, and libcameraservice.so

System-services-related libraries

libcamera_client.so and, in 2.3/Gingerbread, lib
surfaceflinger_client.soc

Client libraries for certain system services

libpixelflinger.so The PixelFlinger library

libui.so Low-level user-interface-related functionalities, such as
user input events handling and dispatching and graphics
buffer allocation and manipulation

libgui.so Library for functions related to sensors and, starting with
4.0/Ice-Cream Sandwich, client communication with the
Surface Flinger

Native User-Space | 55

www.it-ebooks.info

http://www.sqlite.org
http://stlport.sourceforge.net
http://wss.co.uk/pinknoise/tremolo/
http://wss.co.uk/pinknoise/tremolo/
http://www.webkit.org
http://hostap.epitest.fi/wpa_supplicant/
http://hostap.epitest.fi/wpa_supplicant/
http://zlib.net
http://www.it-ebooks.info/

Category Library(ies) Description

liblog.so The logging library

libandroid_runtime.so The Android Runtime library

libandroid.so C interface to lifecycle management, input events, window
management, assets, and Storage Manager

Dalvik libdvm.so The Dalvik VM library

libnativehelper.so JNI-related helper functions

Hardware libhardware.so The HAL library that provides hw_get_module() and
uses dlopen() to load hardware support modules (i.e.,
shared libraries that provide hardware support to the HAL)
on demand

libhardware_legacy.so Legacy HAL library providing hardware support for WiFi,
power-management, and vibrator

Various hardware-supporting shared libraries Libraries that provide support for various hardware
components; some are loaded through the HAL, while
others are loaded automatically by the linker

Media libmediaplayerservice.so The Media Player service library

libmedia.so The low-level media functions used by the Media Player
service

libstagefright*.so The many libraries that make up the StageFright media
framework

libeffects.so and the libraries in the soundfx/
directory

The sound effects libraries

libdrm1.so and libdrm1_jni.so The DRM (Digital Rights Management) framework libraries

OpenGL libEGL.so, libETC1.so, libGLESv1_CM.so,
libGLESv2.so, and egl/ligGLES_android.so

Android’s OpenGL implementation

a Some say that this library is similar in its role to the libsupc++.a found in standard Linux systems, while Android’s libstl
port.so is closer to traditional Linux systems’ libstdc++.so.
b I’m using this category as catchall for many core Android functionalities.
c Starting with 4.0/Ice-Cream Sandwich, the functionality corresponding to libsurfaceflinger_client.so has been merged into
libgui.so.

Since 2.3/Gingerbread, many libraries have been added to that AOSP. Tables 2-4 and
2-5 list some of the most notable additions you’ll find in 4.1/Jelly Bean.

Table 2-4. Important libraries from external projects found in 4.1/Jelly Bean
Library(ies) External Project Original Location License

libtinyalsa.so tinyalsa http://github.com/tinyalsa ASL

libmtp.so libmtp http://libmtp.sourceforge.net/ LGPL

libchromium_net.so WebKit http://webkit.org/ LGPL and BSD

libmdnssd.so mDNSResponder http://www.opensource.apple.com/tarballs/mDNSResponder/ ASL

56 | Chapter 2: Internals Primer

www.it-ebooks.info

http://github.com/tinyalsa
http://libmtp.sourceforge.net/
http://webkit.org/
http://www.opensource.apple.com/tarballs/mDNSResponder/
http://www.it-ebooks.info/

Table 2-5. Important Android-specific libraries found in 4.1/Jelly Bean
Category Library(ies) Description

Core libjnigraphics.so C interface to the 2D graphics system

libcorkscrew.so Debugging library

libRS.so Interface to RenderScript

Media libOpenMAXAL.so Native multimedia library, based on Khronos OpenMAX AL

libOpenSLES.so Khronos OpenSL EL compatible audio system

libaudioutils.so Echo cancellation and other audio tools

Init
One thing Android doesn’t change is the kernel’s boot process. Hence, whatever you
know about the kernel’s startup continues to apply just the same to Android’s use of
Linux. What changes in Android is what happens once the kernel finishes booting.
Indeed, after it’s finished initializing itself and the drivers it contains, the kernel starts
just one user-space process, the init process. This process is then responsible for spawn‐
ing all other processes and services in the system and for conducting critical operations
such as reboots. Traditionally, Linux distributions have relied on SystemV init for the
init process, although in recent years many distributions have created their own variants.
Ubuntu, for instance, uses Upstart. In embedded Linux systems, the classic package that
provides init is BusyBox.

Android introduces its own custom init, which brings with it a few novelties.

Configuration language

Unlike traditional inits, which are predicated on the use of scripts that run per the
current run-levels’ configuration or on request, Android’s init defines its own configu‐
ration semantics and relies on changes to global properties to trigger the execution of
specific instructions.

The main configuration file for init is usually stored as /init.rc, but there’s also usually
a device-specific configuration file stored as /init.<device_name>.rc, where
<device_name> is the name of the device. In some cases, such as the emulator, for
example, there’s also a device-specific script stored as /system/etc/init.<device
_name>.sh. You can get a high degree of control over the system’s startup and its behavior
by modifying those files. For instance, you can disable the Zygote—a key system com‐
ponent that we’ll cover in greater detail later in this chapter and in Chapter 7—from
starting up automatically and then starting it manually yourself after having used adb
to shell into the device.

We’ll discuss the init’s configuration language in depth in Chapter 6.

Native User-Space | 57

www.it-ebooks.info

http://launchpad.net/upstart
http://busybox.net
http://www.it-ebooks.info/

Global properties

A very interesting aspect of Android’s init is how it manages a global set of properties
that can be accessed and set from many parts of the system, with the appropriate rights.
Some of these properties are set at build time, while others are set in init’s configuration
files, and still others are set at runtime. Some properties are also persisted to storage for
permanent use. Since init manages the properties, it can detect any changes and there‐
fore trigger the execution of a set of commands based on its configuration.

The OOM adjustments mentioned earlier, for instance, are set on startup by the init.rc
file. So are network properties. Some of the properties set at build time are stored in
the /system/build.prop file and include the build date and build system details. At run‐
time, the system will have over 100 different properties, ranging from IP and GSM
configuration parameters to the battery’s level. Use the getprop command to get the
current list of properties and their values.

We’ll discuss the init’s global properties, the files used to provide its default values, and
the relevant commands in greater detail in Chapter 6.

udev events

As I explained earlier, access to devices in Linux is done through nodes within
the /dev directory. In the old days, Linux distributions would ship with thousands of
entries in that directory to accommodate all possible device configurations. Eventually,
though, a few schemes were proposed to make the creation of such nodes dynamic. For
some time now, the system in use has been udev, which relies on runtime events gen‐
erated by the kernel every time hardware is added or removed from the system.

In most Linux distributions, the handling of udev hotplug events is done by the udevd
daemon. In Android, these events are handled by the ueventd daemon built as part of
Android’s init and accessed through a symbolic link from /sbin/ueventd to /init. To know
which entries to create in /dev, ueventd relies on the /ueventd.rc and /ueventd.<de
vice_name>.rc files.

We’ll discuss the ueventd and its configuration files in detail in Chapter 6.

Toolbox
Much like the root filesystem’s directory hierarchy, there are essential binaries on most
Linux systems, listed by the FHS for the /bin and /sbin directories. In most Linux dis‐
tributions, the binaries in those directories are built from separate packages coming
from different projects available on the Internet. In an embedded system, it doesn’t make
sense to have to deal with so many packages, nor necessarily to have that many separate
binaries.

58 | Chapter 2: Internals Primer

www.it-ebooks.info

http://www.it-ebooks.info/

The approach taken by the classic BusyBox package is to build a single binary that
essentially has what amounts to a huge switch-case, which checks for the first param‐
eter on the command line and executes the corresponding functionality. All commands
are then made to be symbolic links to the busybox command. So when you type ls, for
example, you’re actually invoking BusyBox. But since BusyBox’s behavior is predicated
on the first parameter on the command line and that parameter is ls, it will behave as if
you had run that command from a standard Linux shell.

Android doesn’t use BusyBox but includes its own tool, Toolbox, that basically functions
in the very same way, using symbolic links to the toolbox command. Unfortunately,
Toolbox is nowhere as feature-rich as BusyBox. In fact, if you’ve ever used BusyBox,
you’re likely going to be very disappointed when using Toolbox. The rationale for cre‐
ating a tool from scratch in this case seems to be the licensing angle, BusyBox being
GPL licensed. In addition, some Android developers have stated that their goal was to
create a minimal tool for shell-based debugging and not to provide a full replacement
for shell tools, as BusyBox is. At any rate, Toolbox is BSD licensed, and manufacturers
can therefore modify it and distribute it without having to track the modifications made
by their developers or making any sources available to their customers.

You might still want to include BusyBox alongside Toolbox to benefit from its capabil‐
ities. If you don’t want to ship it as part of your final product because of its licensing,
you could include it temporarily during development and strip it from the final pro‐
duction release. I’ll cover this in more detail in Appendix A.

Daemons
As part of the system startup, Android’s init starts a few key daemons that continue to
run throughout the lifetime of the system. Some daemons, such as adbd, are started on
demand, depending on build options and changes to global properties. Table 2-6 pro‐
vides a list of some of the more prominent daemons that Android runs. Many of these
are discussed in much greater detail in Chapters 6 and 7.

Table 2-6. Android daemons
Daemon Description

ueventd Android’s replacement for udev.

servicemanager The Binder Context Manager. Acts as an index of all Binder services running in the system.

vold The volume manager. Handles the mounting and formatting of mounted volumes and images.

netd The network manager. Handles tethering, NAT, PPP, PAN, and USB RNDIS.

debuggerd The debugger daemon. Invoked by Bionic’s linker when a process crashes to do a postmortem analysis. Allows
gdb to connect from the host.

rild The RIL daemon. Mediates all communication between the Phone Service and the Baseband Processor.

Zygote The Zygote process. It’s responsible for warming up the system’s cache and starting the System Server. We’ll
discuss it in more detail later in this chapter.

Native User-Space | 59

www.it-ebooks.info

http://www.it-ebooks.info/

Daemon Description

mediaserver The Media server. Hosts most media-related services. We’ll discuss it in more detail later in this chapter.

dbus-daemon The D-Bus message daemon. Acts as an intermediary between D-Bus users. Have a look at its man page for
more information.

bluetoothd The Bluetooth daemon. Manages Bluetooth devices. Provides services through D-Bus. No longer in the AOSP
as of 4.2/Jelly Bean, since the BlueZ stack has been removed.

installd The .apk installation daemon. Takes care of installing and uninstalling .apk files and managing the related
filesystem entries.

keystore The KeyStore daemon. Manages an encrypted key-value pair store for cryptographic keys, SSL certs for
instance.

system_server Android’s System Server. This daemon hosts the vast majority of system services that run in Android.

adbd The ADB daemon. Manages all aspects of the connection between the target and the host’s adb command.

Command-Line Utilities
More than 150 command-line utilities are scattered throughout Android’s root
filesystem. /system/bin contains the majority of them, but some “extras” are in /system/
xbin, and a handful are in /sbin. Around 50 of those in /system/bin are actually symbolic
links to /system/bin/toolbox. The majority of the rest come from the Android base
framework, from external projects merged into the AOSP, or from various other parts
of the AOSP. We’ll get the chance to cover the various binaries found in the AOSP in
more detail in Chapters 6 and 7.

Dalvik and Android’s Java
In a nutshell, Dalvik is Android’s Java virtual machine. It allows Android to run the
byte-code generated from Java-based apps and Android’s own system components and
provides both with the required hooks and environment to interface with the rest of the
system, including native libraries and the rest of the native user-space. There’s more to
be said about Dalvik and Android’s brand of Java, though. But before I can delve into
that explanation, I must first cover some Java basics.

Without boring you with yet another history lesson on the Java language and its origins,
suffice it to say that Java was created by James Gosling at Sun in the early ’90s, that it
rapidly became very popular, and that it was, in sum, more than well established before
Android came around. From a developer perspective, two aspects are important to keep
in mind with regard to Java: its differences from a traditional language such as C and C
++, and the components that make up what we commonly refer to as “Java.”

By design, Java is an interpreted language. Unlike C and C++, where the code you write
gets compiled by a compiler into binary assembly instructions to be executed by a CPU
matching the architecture targeted by the compiler, the code you write in Java gets
compiled by a Java compiler into architecture-independent byte-code that is executed

60 | Chapter 2: Internals Primer

www.it-ebooks.info

http://www.it-ebooks.info/

at runtime by a byte-code interpreter, also commonly referred to as a “virtual machine.”
This modus operandi, along with Java’s semantics, enables the language to include quite
a few features not traditionally found in previous languages, such as reflection and
anonymous classes. Also, unlike C and C++, Java doesn’t require you to keep track of
objects you allocate. In fact, it requires you to lose track of all unused objects, since it
has an integrated garbage collector that will ensure that all such objects are destroyed
when no active code holds a reference to them any longer.

At a practical level, Java is actually made up of a few distinct things: the Java compiler,
the Java byte-code interpreter—more commonly known as the Java Virtual Machine
(JVM)—and the Java libraries commonly used by Java developers. Together, these are
usually obtained by developers through the Java Development Kit (JDK) provided free
of charge by Oracle. Android actually relies on the JDK for the Java compiler at build
time, but it doesn’t use the JVM or the libraries found in the JDK. Instead of the JVM
it relies on Dalvik, and instead of the JDK libraries it relies on the Apache Harmony
project, a clean-room implementation of the Java libraries hosted under the umbrella
of the Apache project.

None of the JDK components are found in the images generated by the
build of the AOSP. Hence, none of the JDK’s components would be
distributed by you when using Android for your embedded system.

Java Lingo
Java has its own specialized terminology. The following explanations should help you
make sense of some of the terms being used in the text, if you aren’t already familiar
with them:
virtual machine

This term was less ambiguous when Java came out, because “virtual machine” soft‐
ware products such as VMware and VirtualBox weren’t as common or as popular
as they are today. Such virtual machines do far more than interpret byte-code, as
Java virtual machines do.

reflection
The ability to ask an object whether it implements a certain method.

anonymous classes
Snippets of code that are passed as a parameter to a method being invoked. An
anonymous class might be used, for instance, as a callback registration method,
thereby enabling the developer to see the code handling an event at the same loca‐
tion in the source code where she invokes the callback registration method.

Dalvik and Android’s Java | 61

www.it-ebooks.info

http://www.it-ebooks.info/

.jar files
.jar files are actually Java ARchives (JAR) containing many .class files, each of which
contains only a single class.

According to its developer, Dan Bornstein, Dalvik distinguishes itself from the JVM by
being specifically designed for embedded systems. Namely, it targets systems that have
slow CPUs and relatively little RAM, run OSes that don’t use swap space, and are battery
powered.

While the JVM munches on .class files, Dalvik prefers the .dex delicatessen. .dex files
are actually generated by postprocessing the .class files generated by the Java compiler
through Android’s dx utility. Among other things, an uncompressed .dex file is 50%
smaller than its originating .jar file.

For more information about the features and internals of Dalvik, I strongly encourage
you to take a look at Dan Bornstein’s Google I/O 2008 presentation entitled “Dalvik
Virtual Machine Internals.” It’s about one hour long and available on YouTube. You can
also just go to YouTube and search for “Dan Bornstein Dalvik.”

Another interesting factoid is that Dalvik is register-based, whereas the
JVM is stack-based, though that is likely to have little to no meaning to
you unless you’re an avid student of VM theory, architecture, and
internals.
If you’d like to get the inside track on the benefits and trade-offs between
stack-based VMs and register-based VMs, have a look at the paper en‐
titled “Virtual Machine Showdown: Stack Versus Registers” by Shi et al.
in proceedings of VEE’05, June 11−12, 2005, Chicago, p. 153−163.

A feature of Dalvik very much worth highlighting, though, is that since 2.2/Froyo it has
included a Just-in-Time (JIT) compiler for ARM, with x86 and MIPS having been added
since. Historically, JIT has been a defining feature for many VMs, helping them close
the gap with noninterpreted languages. Indeed, having a JIT means that Dalvik converts
apps’ byte-codes to binary assembly instructions that run natively on the target’s CPU
instead of being interpreted one instruction at a time by the VM. The result of this
conversion is then stored for future use. Hence, apps take longer to load the first time,
but once they’ve been JIT’ed, they load and run much faster. The only caveat here is that
JIT is available for a limited number of architectures only, namely ARM, x86, and MIPS.

As an embedded developer, you’re unlikely to need to do anything specific to get Dalvik
to work on your system. Dalvik was written to be architecture-independent. It has been
reported that some of the early ports of Dalvik suffered from some endian issues. How‐
ever, these issues seem to have subsided since.

62 | Chapter 2: Internals Primer

www.it-ebooks.info

http://www.youtube.com/watch?v=ptjedOZEXPM
http://www.it-ebooks.info/

Java Native Interface (JNI)
Despite its power and benefits, Java can’t always operate in a vacuum, and code written
in Java sometimes needs to interface with code coming from other languages. This is
especially true in an embedded environment such as Android, where low-level func‐
tionality is never too far away. To that end, the Java Native Interface (JNI) mechanism
is provided. It’s essentially a call bridge to other languages such as C and C++. It’s an
equivalent to P/Invoke in the .NET/C# world.

App developers sometimes use JNI to call the native code they compile with the NDK
from their regular Java code built using the SDK. Internally, though, the AOSP relies
massively on JNI to enable Java-coded services and components to interface with An‐
droid’s low-level functionality, which is mostly written in C and C++. Java-written sys‐
tem services, for instance, very often use JNI to communicate with matching native code
that interfaces with a given service’s corresponding hardware.

A large part of the heavy lifting to allow Java to communicate with other languages
through JNI is actually done by Dalvik. If you go back to Table 2-3 in the previous
section, for instance, you’ll notice the libnativehelper.so library, which is provided as
part of Dalvik for facilitating JNI calls.

Appendix B shows an example use of JNI to interface Java and C code. For the moment,
keep in mind that JNI is central to platform work in Android and that it can be a relatively
complex mechanism to use, especially to ensure that you use the appropriate call se‐
mantics and function parameters.

Unfortunately, JNI seems to be a dark art reserved for the initiated. In
other words, it’s rather difficult to find good documentation on it. There
is one authoritative book on the topic, The Java Native Interface Pro‐
grammer’s Guide and Specification by Sheng Liang (Addison-Wesley,
1999).

System Services
System services are Android’s man behind the curtain. Even if they aren’t explicitly
mentioned in Google’s app development documentation, anything remotely interesting
in Android goes through one of about 50 to 70 system services. These services cooperate
to collectively provide what essentially amounts to an object-oriented OS built on top
of Linux, which is exactly what Binder—the mechanism on which all system services
are built—was intended for. The native user-space we just covered is actually designed
very much as a support environment for Android’s system services. It’s therefore crucial
to understand what system services exist and how they interact with one another and

System Services | 63

www.it-ebooks.info

http://www.it-ebooks.info/

with the rest of the system. We’ve already covered some of this as part of discussing
Android’s hardware support.

Figure 2-4 illustrates in greater detail the system services first introduced in
Figure 2-1. As you can see, there are in fact a couple of major processes involved. Most
prominent is the System Server, whose components all run under the same process,
system_server, and which is mostly made up of Java-coded services with two services
written in C/C++. The System Server also includes some native code access through
JNI to allow some of the Java-based services to interface to Android’s lower layers.
Another set of system services is housed within the Media Service, which runs as me‐
diaserver. These services are all coded in C/C++ and are packaged alongside media-
related components such as the StageFright multimedia framework and audio effects.
Finally, the Phone application houses the Phone service separately from the rest. Since
4.0/Ice-Cream Sandwich, note that the Surface Flinger has been forked off into a separate
standalone process.

The terminology here isn’t my choosing, and it’s unfortunately confus‐
ing. The “System Server” process houses several system services within
the same process. So does the “Media Service.” Both “System Server”
and “Media Service” are spelled out as singular regardless of the num‐
ber of system services they comprise. When this book refers to “system
services,” plural, it refers to all system services available in the system
regardless of the process they run under. So, in short, neither “System
Server” nor “Media Service” are part of the “system services.” Instead,
they are processes used to run the latter.

64 | Chapter 2: Internals Primer

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-4. System services

Note that despite there being only a handful of processes to house the entirety of the
Android’s system services, they all appear to operate independently to anyone connect‐
ing to their services through Binder. Here’s the output of the service utility on an Android
2.3/Gingerbread emulator:

service list
Found 50 services:
0 phone: [com.android.internal.telephony.ITelephony]
1 iphonesubinfo: [com.android.internal.telephony.IPhoneSubInfo]
2 simphonebook: [com.android.internal.telephony.IIccPhoneBook]
3 isms: [com.android.internal.telephony.ISms]
4 diskstats: []
5 appwidget: [com.android.internal.appwidget.IAppWidgetService]
6 backup: [android.app.backup.IBackupManager]
7 uimode: [android.app.IUiModeManager]
8 usb: [android.hardware.usb.IUsbManager]
9 audio: [android.media.IAudioService]
10 wallpaper: [android.app.IWallpaperManager]
11 dropbox: [com.android.internal.os.IDropBoxManagerService]
12 search: [android.app.ISearchManager]
13 location: [android.location.ILocationManager]
14 devicestoragemonitor: []
15 notification: [android.app.INotificationManager]
16 mount: [IMountService]
17 accessibility: [android.view.accessibility.IAccessibilityManager]
18 throttle: [android.net.IThrottleManager]
19 connectivity: [android.net.IConnectivityManager]
20 wifi: [android.net.wifi.IWifiManager]
21 network_management: [android.os.INetworkManagementService]

System Services | 65

www.it-ebooks.info

http://www.it-ebooks.info/

22 netstat: [android.os.INetStatService]
23 input_method: [com.android.internal.view.IInputMethodManager]
24 clipboard: [android.text.IClipboard]
25 statusbar: [com.android.internal.statusbar.IStatusBarService]
26 device_policy: [android.app.admin.IDevicePolicyManager]
27 window: [android.view.IWindowManager]
28 alarm: [android.app.IAlarmManager]
29 vibrator: [android.os.IVibratorService]
30 hardware: [android.os.IHardwareService]
31 battery: []
32 content: [android.content.IContentService]
33 account: [android.accounts.IAccountManager]
34 permission: [android.os.IPermissionController]
35 cpuinfo: []
36 meminfo: []
37 activity: [android.app.IActivityManager]
38 package: [android.content.pm.IPackageManager]
39 telephony.registry: [com.android.internal.telephony.ITelephonyRegistry]
40 usagestats: [com.android.internal.app.IUsageStats]
41 batteryinfo: [com.android.internal.app.IBatteryStats]
42 power: [android.os.IPowerManager]
43 entropy: []
44 sensorservice: [android.gui.SensorServer]
45 SurfaceFlinger: [android.ui.ISurfaceComposer]
46 media.audio_policy: [android.media.IAudioPolicyService]
47 media.camera: [android.hardware.ICameraService]
48 media.player: [android.media.IMediaPlayerService]
49 media.audio_flinger: [android.media.IAudioFlinger]

Here’s the same output on a 4.2/Jelly Bean emulator:
root@android:/ # service list
Found 68 services:
0 phone: [com.android.internal.telephony.ITelephony]
1 iphonesubinfo: [com.android.internal.telephony.IPhoneSubInfo]
2 simphonebook: [com.android.internal.telephony.IIccPhoneBook]
3 isms: [com.android.internal.telephony.ISms]
4 dreams: [android.service.dreams.IDreamManager]
5 commontime_management: []
6 samplingprofiler: []
7 diskstats: []
8 appwidget: [com.android.internal.appwidget.IAppWidgetService]
9 backup: [android.app.backup.IBackupManager]
10 uimode: [android.app.IUiModeManager]
11 serial: [android.hardware.ISerialManager]
12 usb: [android.hardware.usb.IUsbManager]
13 audio: [android.media.IAudioService]
14 wallpaper: [android.app.IWallpaperManager]
15 dropbox: [com.android.internal.os.IDropBoxManagerService]
16 search: [android.app.ISearchManager]
17 country_detector: [android.location.ICountryDetector]
18 location: [android.location.ILocationManager]
19 devicestoragemonitor: []

66 | Chapter 2: Internals Primer

www.it-ebooks.info

http://www.it-ebooks.info/

20 notification: [android.app.INotificationManager]
21 updatelock: [android.os.IUpdateLock]
22 throttle: [android.net.IThrottleManager]
23 servicediscovery: [android.net.nsd.INsdManager]
24 connectivity: [android.net.IConnectivityManager]
25 wifi: [android.net.wifi.IWifiManager]
26 wifip2p: [android.net.wifi.p2p.IWifiP2pManager]
27 netpolicy: [android.net.INetworkPolicyManager]
28 netstats: [android.net.INetworkStatsService]
29 textservices: [com.android.internal.textservice.ITextServicesManager]
30 network_management: [android.os.INetworkManagementService]
31 clipboard: [android.content.IClipboard]
32 statusbar: [com.android.internal.statusbar.IStatusBarService]
33 device_policy: [android.app.admin.IDevicePolicyManager]
34 lock_settings: [com.android.internal.widget.ILockSettings]
35 mount: [IMountService]
36 accessibility: [android.view.accessibility.IAccessibilityManager]
37 input_method: [com.android.internal.view.IInputMethodManager]
38 input: [android.hardware.input.IInputManager]
39 window: [android.view.IWindowManager]
40 alarm: [android.app.IAlarmManager]
41 vibrator: [android.os.IVibratorService]
42 battery: []
43 hardware: [android.os.IHardwareService]
44 content: [android.content.IContentService]
45 account: [android.accounts.IAccountManager]
46 user: [android.os.IUserManager]
47 permission: [android.os.IPermissionController]
48 cpuinfo: []
49 dbinfo: []
50 gfxinfo: []
51 meminfo: []
52 activity: [android.app.IActivityManager]
53 package: [android.content.pm.IPackageManager]
54 scheduling_policy: [android.os.ISchedulingPolicyService]
55 telephony.registry: [com.android.internal.telephony.ITelephonyRegistry]
56 display: [android.hardware.display.IDisplayManager]
57 usagestats: [com.android.internal.app.IUsageStats]
58 batteryinfo: [com.android.internal.app.IBatteryStats]
59 power: [android.os.IPowerManager]
60 entropy: []
61 sensorservice: [android.gui.SensorServer]
62 media.audio_policy: [android.media.IAudioPolicyService]
63 media.camera: [android.hardware.ICameraService]
64 media.player: [android.media.IMediaPlayerService]
65 media.audio_flinger: [android.media.IAudioFlinger]
66 drm.drmManager: [drm.IDrmManagerService]
67 SurfaceFlinger: [android.ui.ISurfaceComposer]

There is unfortunately not much documentation on how each of these services operates.
You’ll have to look at each service’s source code to get a precise idea of how it works and
how it interacts with other services.

System Services | 67

www.it-ebooks.info

http://www.it-ebooks.info/

Reverse-Engineering Source Code
Fully understanding the internals of Android’s system services is like trying to swallow
a whale. In 2.3/Gingerbread there were about 85,000 lines of Java code in the System
Server alone, spread across 100 different files. And that didn’t count any system service
code written in C/C++. To add insult to injury, so to speak, the comments are few and
far between and the design documents nonexistent. Arm yourself with a good dose of
patience if you want to dig further here.

One trick is to create a new Java project in Eclipse and import the System Server’s code
into that project. This won’t compile in any way, but it’ll allow you to benefit from
Eclipse’s Java browsing capabilities in trying to understand the code. For instance, you
can open a single Java file, right-click the source browsing scrollbar area, and select
Folding → Collapse All. This will essentially collapse all methods into a single line next
to a plus sign (+) and will allow you to see the trees (the method names lined up one
after another) instead of the leaves (the actual content of each method.) You’ll very much
still be in a forest, though.

You can also try using one of the commercial source code analysis tools on the market
from vendors such as Imagix, Rationale, Lattix, or Scitools. Although there are some
open source analysis tools out there, most seem geared toward locating bugs, not
reverse-engineering the code being analyzed. Still, some have reported that they’ve
found Ctags and the open source AndroidXRef projects helpful in their efforts.

Service Manager and Binder Interaction
As I explained earlier, the Binder mechanism used as system services’ underlying fabric
enables object-oriented RPC/IPC. For a process in the system to invoke a system service
through Binder, though, it must first have a handle to it. For instance, Binder will enable
an app developer to request a wakelock from the Power Manager by invoking the
acquire() method of its WakeLock nested class. Before that call can be made, though,
the developer must first get a handle to the Power Manager service. As we’ll see in the
next section, the app development API actually hides the details of how it gets this handle
in an abstraction to the developer, but under the hood all system service handle lookups
are done through the Service Manager, as illustrated in Figure 2-5.

68 | Chapter 2: Internals Primer

www.it-ebooks.info

http://androidxref.com/
http://www.it-ebooks.info/

Figure 2-5. Service Manager and Binder interaction

Think of the Service Manager as a Yellow Pages book of all services available in the
system. If a system service isn’t registered with the Service Manager, then it’s effectively
invisible to the rest of the system. To provide this indexing capability, the Service Man‐
ager is started by init before any other service. It then opens /dev/binder and uses a
special ioctl() call to set itself as the Binder’s Context Manager (A1 in Figure 2-5.)
Thereafter, any process in the system that attempts to communicate with Binder ID 0
(a.k.a. the “magic” Binder or “magic object” in various parts of the code) is actually
communicating through Binder to the Service Manager.

When the System Server starts, for instance, it registers every single service it instantiates
with the Service Manager (A2). Later, when an app tries to talk to a system service, such
as the Power Manager service, it first asks the Service Manager for a handle to the service
(B1) and then invokes that service’s methods (B2). In contrast, a call to a service
component running within an app goes directly through Binder (C1) and is not looked
up through the Service Manager.

The Service Manager is also used in a special way by a number of command-line utilities
such as the dumpsys utility, which allows you to dump the status of a single or all system
services. To get the list of all services, dumpsys loops around to get every system service
(D1), requesting the nth plus one at every iteration until there aren’t any more. To get

System Services | 69

www.it-ebooks.info

http://www.it-ebooks.info/

each service, dumpsys just asks the Service Manager to locate that specific one (D2).
With a service handle in hand, dumpsys invokes that service’s dump() function to dump
its status (D3) and displays that on the terminal.

Calling on Services
All of what I just explained is, as I said earlier, almost invisible to regular app developers.
Here’s a snippet, for instance, that allows us to grab a wakelock within an app using the
regular application development API:

PowerManager pm = (PowerManager) getSystemService(POWER_SERVICE);
PowerManager.WakeLock wakeLock =
 pm.newWakeLock(PowerManager.FULL_WAKE_LOCK, "myPreciousWakeLock");
wakeLock.acquire(100);

Notice that we don’t see any hint of the Service Manager here. Instead, we’re using
getSystemService() and passing it the POWER_SERVICE parameter. Internally, though,
the code that implements getSystemService() does actually use the Service Manager
to locate the Power Manager service so that we create a wakelock and acquire it. Ap‐
pendix B shows you how to add a system service and make it available through getSys
temService().

A Service Example: the Activity Manager
Although covering each and every system service is outside the scope of this book, let’s
have a quick look at the Activity Manager, one of the key system services. In 2.3/Ginger‐
bread, the Activity Manager’s sources actually span over 30 files and 20,000 lines of code.
If there’s a core to Android’s internals, this service is very much near it. It takes care of
the starting of new components, such as Activities and Services, along with the fetching
of Content Providers and intent broadcasting. If you ever got the dreaded ANR (Ap‐
plication Not Responding) dialog box, know that the Activity Manager was behind it.
It’s also involved in the maintenance of OOM adjustments used by the in-kernel low-
memory handler, permissions, task management, etc.

For instance, when the user clicks an icon to start an app from his home screen, the first
thing that happens is the Launcher’s onClick() callback is called (the Launcher being
the default app packaged with the AOSP that takes care of the main interface with the
user, the home screen). To deal with the event, the Launcher will then call, through
Binder, the startActivity() method of the Activity Manager service. The service will
then call the startViaZygote() method, which will open a socket to the Zygote and
ask it to start the Activity. All this may make more sense after you read the final section
of this chapter.

If you’re familiar with Linux’s internals, a good way to think of the Activity Manager is
that it’s to Android what the content of the kernel/ directory in the kernel’s sources is to
Linux. It’s that important.

70 | Chapter 2: Internals Primer

www.it-ebooks.info

http://www.it-ebooks.info/

Stock AOSP Packages
The AOSP ships with a certain number of default packages that are found in most
Android devices. As I mentioned in the previous chapter, though, some apps such as
Maps, YouTube, and Gmail aren’t part of the AOSP. Let’s take a look at some of the most
notable packages included by default; as we’ll see below, the AOSP includes many more
packages. Table 2-7 lists the most important stock apps included in the 2.3/Gingerbread
AOSP; Table 2-8 lists that AOSP’s main content providers; and Table 2-9 lists the cor‐
responding IMEs (input method editors).

While stock apps are coded very much like standard apps, most won’t
build outside the AOSP using the standard SDK. Hence, if you’d like to
create your own version of one of these apps (i.e., fork it), you’ll either
have to do it inside the AOSP or invest some time in getting the app to
build outside the AOSP with the standard SDK. For one thing, these
apps sometimes use APIs that are accessible within the AOSP but aren’t
exported through the standard SDK.

Table 2-7. Stock AOSP apps
App in AOSP Name Displayed in

Launcher
Description

AccountsAndSyncSettings N/A Accounts management app

Bluetooth N/A Bluetooth manager

Browser Browser Default Android browser, includes bookmark widget

Calculator Calculator Calculator app

Calendar Calendar Calendar app

Camera Camera Camera app

CertInstaller N/A UI for installing certificates

Contacts Contacts Contacts manager app

DeskClock Clock Clock and alarm app, including the clock widget

DownloadProviderUi Downloads UI for DownloadProvider

Development Dev Tools Miscellaneous dev tools

Email Email Default Android email app

Gallery Gallery Default gallery app for viewing pictures

Gallery3D Gallery Fancy gallery with “sexier” UI

HTMLViewer N/A App for viewing HTML files

Launcher2 N/A Default home screen

Mms Messaging SMS/MMS app

Music Music Music player

Stock AOSP Packages | 71

www.it-ebooks.info

http://www.it-ebooks.info/

App in AOSP Name Displayed in
Launcher

Description

Nfc N/A NFC configuration UI and NFC system service

PackageInstaller N/A App install/uninstall UI

Phone Phone Default phone dialer/UI and phone system service

Protips N/A Home screen tips

Provision N/A App for setting a flag indicating whether a device was provisioned

QuickSearchBox Search Search app and widget

Settings Settings Settings app, also accessible through home screen menu

SoundRecorder N/A Sound recording app; activated when recording intent is sent, not by
user

SpeechRecorder Speech Recorder Speech recording app

SystemUI N/A Status bar

Table 2-8. Stock AOSP providers
Provider Description

ApplicationsProvider Provider to search installed apps

CalendarProvider Main Android calendar storage and provider

ContactsProvider Main Android contacts storage and provider

DownloadProvidera Download management, storage, and access

DrmProvider Management and access of DRM-protected storage

MediaProvider Media storage and provider

TelephonyProvider Carrier and SMS/MMS storage and provider

UserDictionaryProvider Storage and provider for user-defined words dictionary
a Interestingly, this package’s source code includes a design document, a rarity in the AOSP.

Table 2-9. Stock AOSP input methods
Input Method Description

LatinIME Latin keyboard

OpenWnn Japanese keyboard

PinyinIME Chinese keyboard

The AOSP contains a lot more packages than those listed in the above tables. Indeed, if
you search the sources, you’ll find that a 4.2/Jelly Bean release can generate about 500
apps. A large number of those are either tests or samples and aren’t worth focusing on
in the current discussion. Roughly a quarter of these apps are worth putting into a final
product, and they are mostly found in the following directories of the AOSP:

72 | Chapter 2: Internals Primer

www.it-ebooks.info

http://www.it-ebooks.info/

• packages/apps/
• packages/inputmethods/
• packages/providers/
• packages/screensavers/ (new to 4.2/Jelly Bean)
• packages/wallpapers/
• frameworks/base/packages/
• development/apps/

You’ll probably want to look at the content of those directories in conjunction with the
above tables to determine which packages are worth further investigation in the context
of your project. Like many other things in the AOSP, of course, the packages it contains
change over time, as do their locations. Here’s a summary of some of the location changes
that have occurred between 2.3.4/Gingerbread and 4.2/Jelly Bean:

• AccountAndSyncSettings and Gallery3D have been removed from packages/
apps/, and the following packages have been added: CellBroadcastReceiver, Smart‐
CardService, BasicSmsReceiver, Exchange, Gallery2, KeyChain, MusicFX, Spare‐
Parts, VideoEditor, and LegacyCamera.

• TtsService and VpnServices have been removed from frameworks/base/packages/,
and the following packages have been added: BackupRestoreConfirmation,
SharedStorageBackup, VpnDialogs, WAPPushManager, FakeOemFeatures, Fused‐
Location, and InputDevices.

System Startup
The best way to bring together everything we’ve discussed is to look at Android’s startup.
As you can see in Figure 2-6, the first cog to turn is the CPU. It typically has a hardcoded
address from which it fetches its first instructions. That address usually points to a chip
that has the bootloader programmed on it. The bootloader then initializes the RAM,
puts basic hardware in a quiescent state, loads the kernel and RAM disk, and jumps into
the kernel. More recent SoC devices, which include a CPU and a slew of peripherals in
a single chip, can actually boot straight from a properly formatted SD card or SD-card-
like chip. The PandaBoard and recent editions of the BeagleBoard, for instance, don’t
have any onboard flash chips because they boot straight from an SD card.

System Startup | 73

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-6. Android’s boot sequence

The initial kernel startup is very hardware dependent, but its purpose is to set things
up so that the CPU can start executing C code as early as possible. Once that’s done, the
kernel jumps to the architecture-independent start_kernel() function, initializes its
various subsystems, and proceeds to call the “init” functions of all built-in drivers. The
majority of messages printed out by the kernel at startup come from these steps. The
kernel then mounts its root filesystem and starts the init process.

That’s when Android’s init kicks in and executes the instructions stored in its /init.rc
file to set up environment variables such as the system path, create mount points, mount
filesystems, set OOM adjustments, and start native daemons. We’ve already covered the
various native daemons active in Android, but it’s worth focusing a little on the Zygote.
The Zygote is a special daemon whose job is to launch apps. Its functionality is
centralized here in order to unify the components shared by all apps and to shorten
their start-up time. The init doesn’t actually start the Zygote directly; instead it uses the

74 | Chapter 2: Internals Primer

www.it-ebooks.info

http://www.it-ebooks.info/

app_process command to get Zygote started by the Android Runtime. The runtime then
starts the first Dalvik VM of the system and tells it to invoke the Zygote’s main().

Zygote is active only when a new app needs to be launched. To achieve a speedier app
launch, the Zygote starts by preloading all Java classes and resources that an app may
potentially need at runtime. This effectively loads those into the system’s RAM. The
Zygote then listens for connections on its socket (/dev/socket/zygote) for requests to start
new apps. When it gets a request to start an app, it forks itself and launches the new app.
The beauty of having all apps fork from the Zygote is that it’s a “virgin” VM that has all
the system classes and resources an app may need preloaded and ready to be used. In
other words, new apps don’t have to wait until those are loaded to start executing.

All of this works because the Linux kernel implements a copy-on-write (COW) policy
for forks. As you may know, forking in Unix involves creating a new process that is an
exact copy of the parent process. With COW, Linux doesn’t actually copy anything.
Instead, it maps the pages of the new process over to those of the parent process and
makes copies only when the new process writes to a page. But in fact the classes and
resources loaded are never written to, because they’re the default ones and are pretty
much immutable within the lifetime of the system. So all processes directly forking from
the Zygote are essentially using its own mapped copies. Therefore, regardless of the
number of apps running on the system, only one copy of the system classes and the
resources is ever loaded in RAM.

Although the Zygote is designed to listen to connections for requests to fork new apps,
there is one “app” that the Zygote actually starts explicitly: the System Server. This is the
first app started by the Zygote, and it continues to live on as an entirely separate process
from its parent. The System Server then starts initializing each system service it houses
and registering it with the previously started Service Manager. One of the services it
starts, the Activity Manager, will end its initialization by sending an intent of type
Intent.CATEGORY_HOME. This starts the Launcher app, which then displays the home
screen familiar to all Android users.

When the user clicks an icon on the home screen, the process I described in “A Service
Example: the Activity Manager” on page 70 takes place. The Launcher asks the Activity
Manager to start the process, which in turn “forwards” that request on to the Zygote,
which itself forks and starts the new app, which is then displayed to the user.

Once the system has finished starting up, the process list will look something like this:
ps
USER PID PPID VSIZE RSS WCHAN PC NAME
root 1 0 268 180 c009b74c 0000875c S /init
root 2 0 0 0 c004e72c 00000000 S kthreadd
root 3 2 0 0 c003fdc8 00000000 S ksoftirqd/0
root 4 2 0 0 c004b2c4 00000000 S events/0
root 5 2 0 0 c004b2c4 00000000 S khelper
root 6 2 0 0 c004b2c4 00000000 S suspend

System Startup | 75

www.it-ebooks.info

http://www.it-ebooks.info/

root 7 2 0 0 c004b2c4 00000000 S kblockd/0
root 8 2 0 0 c004b2c4 00000000 S cqueue
root 9 2 0 0 c018179c 00000000 S kseriod
root 10 2 0 0 c004b2c4 00000000 S kmmcd
root 11 2 0 0 c006fc74 00000000 S pdflush
root 12 2 0 0 c006fc74 00000000 S pdflush
root 13 2 0 0 c0079750 00000000 D kswapd0
root 14 2 0 0 c004b2c4 00000000 S aio/0
root 22 2 0 0 c017ef48 00000000 S mtdblockd
root 23 2 0 0 c004b2c4 00000000 S kstriped
root 24 2 0 0 c004b2c4 00000000 S hid_compat
root 25 2 0 0 c004b2c4 00000000 S rpciod/0
root 26 1 232 136 c009b74c 0000875c S /sbin/ueventd
system 27 1 804 216 c01a94a4 afd0b6fc S /system/bin/servicemanager
root 28 1 3864 308 ffffffff afd0bdac S /system/bin/vold
root 29 1 3836 304 ffffffff afd0bdac S /system/bin/netd
root 30 1 664 192 c01b52b4 afd0c0cc S /system/bin/debuggerd
radio 31 1 5396 440 ffffffff afd0bdac S /system/bin/rild
root 32 1 60832 16348 c009b74c afd0b844 S zygote
media 33 1 17976 1104 ffffffff afd0b6fc S /system/bin/mediaserver
bluetooth 34 1 1256 280 c009b74c afd0c59c S /system/bin/dbus-daemon
root 35 1 812 232 c02181f4 afd0b45c S /system/bin/installd
keystore 36 1 1744 212 c01b52b4 afd0c0cc S /system/bin/keystore
root 38 1 824 272 c00b8fec afd0c51c S /system/bin/qemud
shell 40 1 732 204 c0158eb0 afd0b45c S /system/bin/sh
root 41 1 3368 172 ffffffff 00008294 S /sbin/adbd
system 65 32 123128 25232 ffffffff afd0b6fc S system_server
app_15 115 32 77232 17576 ffffffff afd0c51c S com.android.inputmethod.
 latin
radio 120 32 86060 17952 ffffffff afd0c51c S com.android.phone
system 122 32 73160 17656 ffffffff afd0c51c S com.android.systemui
app_27 125 32 80664 22900 ffffffff afd0c51c S com.android.launcher
app_5 173 32 74404 18024 ffffffff afd0c51c S android.process.acore
app_2 212 32 73112 17032 ffffffff afd0c51c S android.process.media
app_19 284 32 70336 16672 ffffffff afd0c51c S com.android.bluetooth
app_22 292 32 72752 17844 ffffffff afd0c51c S com.android.email
app_23 320 32 70276 15792 ffffffff afd0c51c S com.android.music
app_28 328 32 70744 16444 ffffffff afd0c51c S com.android.quicksearchbox
app_14 345 32 69708 15404 ffffffff afd0c51c S com.android.protips
app_21 354 32 70912 17152 ffffffff afd0c51c S com.cooliris.media
root 366 41 2128 292 c003da38 00110c84 S /bin/sh
root 367 366 888 324 00000000 afd0b45c R /system/bin/ps

This output actually comes from a 2.3/Gingerbread Android emulator, so it contains
some emulator-specific artifacts such as the qemud daemon. Notice that the apps run‐
ning all bear their fully qualified package names despite being forked from the Zygote.
This is a neat trick that can be pulled in Linux by using the prctl() system call with
PR_SET_NAME to tell the kernel to change the calling process’s name. Have a look at
prctl()’s man page if you’re interested in it. Note also that the first process started by
init is actually ueventd. All processes prior to that are actually started from within the
kernel by subsystems or drivers.

76 | Chapter 2: Internals Primer

www.it-ebooks.info

http://www.it-ebooks.info/

Most importantly, notice that the Zygote’s process identifier (PID) is 32 and the the
parent PID (PPID) of all apps is 32. This illustrates the earlier explanations that the
Zygote is the parent of all apps in the system.

System Startup | 77

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

AOSP Jump-Start

Now that you have a solid understanding of the basics, let’s start getting our hands dirty
with the Android Open Source Project (AOSP). We’ll start by covering how to get the
AOSP distribution from http://android.googlesource.com/. Before actually building and
running the AOSP, we’ll spend some time exploring the AOSP’s contents and explain
how the sources reflect what we just saw in the previous chapter. Finally, we’ll close the
chapter by covering the use of adb and the emulator, two very important tools when
doing any sort of platform work.

Above all, this chapter is meant to be fun. The AOSP is an exciting piece of software
with a tremendous amount of innovation. OK, I’ll admit it’s not all rosy, and some parts
do have rough edges. Still, other parts are pure genius. The most amazing thing of all,
obviously, is that we can all download it, modify it, and ship our own custom products
based on it. So roll up your sleeves and let’s get started.

Development Host Setup
As we discussed in “Development Setup and Tools” on page 22, you’ll need an Ubuntu-
based desktop in order to work on the AOSP. Even though other systems can be made
to work, that’s the one Google documents as being supported. I suggest you flip back
and reread that section to review the basic host setup required for AOSP work. Also, I
suggest you have a look at the Initializing a Build Environment section of Google’s http://
source.android.com website for the latest information on how to set up your host for
building Android’s sources. That page also covers configuring udev to ensure permis‐
sions are properly set to let you access an Android device connected to your host.

79

www.it-ebooks.info

http://android.googlesource.com/
http://source.android.com/source/initializing.html
http://source.android.com
http://source.android.com
http://www.it-ebooks.info/

Getting the AOSP
As I mentioned earlier, the official AOSP is available at http://android.google
source.com, which sports the Gitweb interface (git’s Web interface) shown in
Figure 3-1. When you visit the site, you will see a fairly large number of git repositories
you can pull. Needless to say, pulling each and every one of these manually would be
rather tedious; there are over 100. And, in fact, pulling them all would be quite useless
because only a subset of these projects is needed. The right way to pull the AOSP is to
use the repo tool, which is available at the very same location. First, though, you’ll need
to get repo itself:

$ sudo apt-get install curl
$ curl https://dl-ssl.google.com/dl/googlesource/git-repo/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Figure 3-1. The Android Git repositories web frontend

80 | Chapter 3: AOSP Jump-Start

www.it-ebooks.info

http://android.googlesource.com
http://android.googlesource.com
http://www.it-ebooks.info/

Under Ubuntu, ~/bin is automatically added to your path when you log
in, if it already exists. So, if you don’t have a bin/ directory in your home
directory, create it, and then log out and log back in to make it part of
your path. Otherwise, the shell won’t be able to find repo, even if you
fetch it as I just showed.
If this doesn’t work, either in Ubuntu or any other distribution you may
be using, add a PATH=$PATH:~/bin to your ~/.profile manually, and then
log out and log back in.

You don’t have to put repo in ~/bin, but it has to be in your path. So
regardless of where you put it, just make sure it’s available to you in all
locations in the filesystem from the command line.

Despite its structure as a single shell script, repo is actually quite an intricate tool. It can
simultaneously pull from multiple git repositories to create an Android distribution.
The repositories it pulls from are given to it through a manifest file, which is an XML
file describing the projects that need to be pulled from and their location. repo is in fact
layered on top of git, and each project it pulls from is an independent git repository. You
can find out more about what pushed Google to create repo from the blog post Gerrit
and Repo, the Android Source Management Tools, published in November 2008, soon
after Android’s first open source release.

Confusing as it may be, note that repo’s “manifest” file has absolutely
nothing to do with “manifest” files (AndroidManifest.xml) used by app
developers to describe their apps to the system. Their formats and uses
are completely different. Fortunately, they rarely have to be used within
the same context, so while you should keep this fact in mind, we won’t
need to worry too much about it in the coming explanations.

Before you can use repo, you’ll need to make sure that git is installed on your system, as
it may not have been there by default:

$ sudo apt-get install git

Now that we’ve got repo and git, let’s get ourselves a copy of the AOSP:
$ mkdir -p ~/android/aosp-2.3.x
$ cd ~/android/aosp-2.3.x
$ repo init -u https://android.googlesource.com/platform/manifest.git
 -b gingerbread
$ repo sync

The last command should run for quite some time as it goes and fetches the sources of
all the projects described in the manifest file. After all, the AOSP is several gigabytes in

Getting the AOSP | 81

www.it-ebooks.info

http://google-opensource.blogspot.com/2008/11/gerrit-and-repo-android-source.html
http://google-opensource.blogspot.com/2008/11/gerrit-and-repo-android-source.html
http://www.it-ebooks.info/

size uncompiled, as mentioned in “Development Setup and Tools” on page 22. Keep in
mind that network bandwidth and latencies will play a big role in how long this takes.
Note also that we are fetching a specific branch of the tree, Gingerbread. That’s the -b
gingerbread part of the third command. If you omit that part, you will be getting the
master branch. It’s been the experience of many people that the master branch doesn’t
always build or run properly, because it contains the tip of the open development branch.
Tagged branches, on the other hand, mostly work out of the box. If you’re planning to
make contributions back to the AOSP, however, note that Google accepts contributions
to the master branch only.

You can get more information about repo’s capabilities by using its online help:
$ repo help
usage: repo COMMAND [ARGS]

The most commonly used repo commands are:

 abandon Permanently abandon a development branch
 branch View current topic branches
 branches View current topic branches
 checkout Checkout a branch for development
 cherry-pick Cherry-pick a change.
 diff Show changes between commit and working tree
 download Download and checkout a change
 grep Print lines matching a pattern
 init Initialize repo in the current directory
 list List projects and their associated directories
 overview Display overview of unmerged project branches
 prune Prune (delete) already merged topics
 rebase Rebase local branches on upstream branch
 smartsync Update working tree to the latest known good revision
 stage Stage file(s) for commit
 start Start a new branch for development
 status Show the working tree status
 sync Update working tree to the latest revision
 upload Upload changes for code review

See 'repo help <command>' for more information on a specific command.
See 'repo help --all' for a complete list of recognized commands.

As the above output indicates, you can also ask for more information about any of
repo’s subcommands:

$ repo help init
Summary

Initialize repo in the current directory

Usage: repo init [options]

Options:

82 | Chapter 3: AOSP Jump-Start

www.it-ebooks.info

http://www.it-ebooks.info/

 -h, --help show this help message and exit

 Logging options:
 -q, --quiet be quiet

 Manifest options:
 -u URL, --manifest-url=URL
 manifest repository location
 -b REVISION, --manifest-branch=REVISION
 manifest branch or revision
 -m NAME.xml, --manifest-name=NAME.xml
 initial manifest file
 --mirror create a replica of the remote repositories rather
 than a client working directory
 --reference=DIR location of mirror directory
 --depth=DEPTH create a shallow clone with given depth; see git clone
 -g GROUP, --groups=GROUP
 restrict manifest projects to ones with a specified
 group
 -p PLATFORM, --platform=PLATFORM
 restrict manifest projects to ones with a specified
 platform group [auto|all|none|linux|darwin|...]

 repo Version options:
 --repo-url=URL repo repository location
 --repo-branch=REVISION
 repo branch or revision
 --no-repo-verify do not verify repo source code

 Other options:
 --config-name Always prompt for name/e-mail

Description

The 'repo init' command is run once to install and initialize repo. The
latest repo source code and manifest collection is downloaded from the
server and is installed in the .repo/ directory in the current working
directory.

The optional -b argument can be used to select the manifest branch to
checkout and use. If no branch is specified, master is assumed.

The optional -m argument can be used to specify an alternate manifest to
be used. If no manifest is specified, the manifest default.xml will be
used.

The --reference option can be used to point to a directory that has the
content of a --mirror sync. This will make the working directory use as
much data as possible from the local reference directory when fetching
from the server. This will make the sync go a lot faster by reducing
data traffic on the network.

Getting the AOSP | 83

www.it-ebooks.info

http://www.it-ebooks.info/

1. Thanks to Linaro’s Bernhard Rosenkränzer for pointing out this really useful trick.

Switching Manifest Branches

To switch to another manifest branch, `repo init -b otherbranch` may be
used in an existing client. However, as this only updates the manifest,
a subsequent `repo sync` (or `repo sync -d`) is necessary to update the
working directory files.

When you look at repo sync’s online help, for instance, one of the flags you will likely
want to investigate further is -j, since it permits syncing several git trees in parallel. This
is especially useful if you’ve got a generous corporate net connection and would like to
speed up your downloading of the AOSP—by default, repo does four parallel downloads:

$ repo sync -j8

Getting other branches and tags is also relatively simple. Here’s getting 4.2/Jelly Bean:
$ mkdir -p ~/android/aosp-4.2
$ cd ~/android/aosp-4.2
$ repo init -u https://android.googlesource.com/platform/manifest
-b android-4.2_r1

$ repo sync

In contrast to the earlier command, I’m using a specific version number instead of a
version name. Codenames, Tags, and Build Numbers provides a full list of the official
tags and version numbers. You can find the available tags and branches for yourself by
doing something like this:1

$ mkdir ~/android/aosp-branches-tags
$ cd ~/android/aosp-branches-tags
$ git clone https://android.googlesource.com/platform/manifest.git
$ cd manifest
$ git tag
android-1.6_r1.1_
android-1.6_r1.2_
android-1.6_r1.3_
android-1.6_r1.4_
android-1.6_r1.5_
android-1.6_r1_
android-1.6_r2_
android-2.0.1_r1_
android-2.0_r1_
android-2.1_r1_
android-2.1_r2.1p2_
android-2.1_r2.1p_
...
android-4.1.1_r6
android-4.1.1_r6.1

84 | Chapter 3: AOSP Jump-Start

www.it-ebooks.info

http://source.android.com/source/build-numbers.html
http://www.it-ebooks.info/

android-4.1.2_r1
android-4.2.1_r1__
android-4.2_r1___
android-cts-2.2_r8
android-cts-2.3_r10
android-cts-2.3_r11
...
$ git branch -a
* master
 remotes/origin/HEAD -> origin/master
 remotes/origin/android-1.6_r1
 remotes/origin/android-1.6_r1.1
 remotes/origin/android-1.6_r1.2
 remotes/origin/android-1.6_r1.3
 remotes/origin/android-1.6_r1.4
 remotes/origin/android-1.6_r1.5
 remotes/origin/android-1.6_r2
 remotes/origin/android-2.0.1_r1
 remotes/origin/android-2.0_r1
 remotes/origin/android-2.1_r1
 remotes/origin/android-2.1_r2
 remotes/origin/android-2.1_r2.1p
 remotes/origin/android-2.1_r2.1p2
...
 remotes/origin/android-4.1.1_r6.1
 remotes/origin/android-4.1.2_r1
 remotes/origin/android-4.2.1_r1
 remotes/origin/android-4.2_r1
 remotes/origin/android-cts-2.2_r8
 remotes/origin/android-cts-2.3_r10
 remotes/origin/android-cts-2.3_r11
...
 remotes/origin/android-sdk-support_r11
 remotes/origin/froyo
 remotes/origin/gingerbread
 remotes/origin/gingerbread-release
 remotes/origin/ics-mr0
 remotes/origin/ics-mr1
 remotes/origin/ics-plus-aosp
 remotes/origin/jb-dev
 remotes/origin/jb-mr1-dev
 remotes/origin/jumper-stable
 remotes/origin/master
 remotes/origin/master-dalvik
 remotes/origin/tools_r20
 remotes/origin/tools_r21
 remotes/origin/tools_r21.1
 remotes/origin/tradefed

All of the above is, of course, limited to the official AOSP. Have a look at Appendix E
for a list of other AOSP trees that may be relevant to your work, such as those maintained

Getting the AOSP | 85

www.it-ebooks.info

http://www.it-ebooks.info/

by Linaro and CynogenMod. Interestingly, most of these alternative trees also rely on
repo, which is all the more reason to learn how to master this tool.

Inside the AOSP
Now that we’ve got a copy of the AOSP, let’s start looking at what’s inside and, most
importantly, connect that to what we just saw in the previous chapter. Feel free to skip
over this section and come back to it after the next section if you’re too eager to get your
own custom Android running. For those of you still reading, have a look at Table 3-1
for a summary of the AOSP’s top-level directory for 2.3.7/Gingerbread and 4.2/Jelly
Bean. Where “N/A” is listed in one of the Size columns for a directory, that directory
doesn’t exist in that version. Also, the sizes given don’t include the .git directories that
might have been included underneath any of the given entries.

Table 3-1. AOSP content summary
Directory Content Size (in MB) in 2.3.7 Size (in MB) in 4.2

abi Minimal C++ Run-Time Type Information
support

N/A 0.1

bionic Android’s custom C library 14 18

bootable OTA, recovery mechanism and reference
bootloader

4 4

build Build system 4 5

cts Comptability Test Suite 77 136

dalvik Dalvik VM 35 40

development Development tools 64 87

device Device-specific files and components 17 43

docs Content of http://source.android.com N/A 6

external External projects imported into the AOSP 849 1,595

frameworks Core components such as system services 360 1,150

gdk Unknowna N/A 5

hardware HAL and hardware support libraries 27 52

libcore Apache Harmony 54 40

libnativehelperb Helper functions for use with JNI N/A 0.1

ndk Native Development Kit 13 31

packages Stock Android apps, providers, and IMEs 115 278

pdk Platform Development Kit N/A 0.3

prebuilt Prebuilt binaries, including toolchains 1,389 N/A

prebuilts Replacement for prebuilt N/A 2,387

sdk Software Development Kit 14 54

86 | Chapter 3: AOSP Jump-Start

www.it-ebooks.info

http://source.android.com
http://www.it-ebooks.info/

Directory Content Size (in MB) in 2.3.7 Size (in MB) in 4.2

system “Embedded Linux” platform that houses
Android

32 9

tools Various IDE tools N/A 34
a Despite several attempts, the author has been unable to identify what purpose this directory serves, apart from it having something
to do with the NDK and LLVM. Even the git logs don’t hint at what the acronym stands for. It’s possibly experimental code for future
use.
b This was a subdirectory of dalvik/ in 2.3.7.

As you can see, prebuilt (prebuilts in 4.2/Jelly Bean) and external are the two largest
directories in the tree, accounting for close to 75% of its size in 2.3.7/Gingerbread and
above 65% of its size in 4.2/Jelly Bean. Interestingly, both of these directories are mostly
made up of content from other open source projects and include things like various
GNU toolchain versions, kernel images, common libraries, and frameworks such as
OpenSSL and WebKit, etc. libcore is also from another open source project, Apache
Harmony. In essence, this is further evidence of how much Android relies on the rest
of the open source ecosystem to exist. Still, Android contains a fair bit of “original” (or
nearly) code: about 800 MB of it in 2.3.7/Gingerbread and about 2 GB in 4.2/Jelly Bean.

To best understand Android’s sources, it’s useful to refer back to Figure 2-1, which
illustrated Android’s architecture. Figure 3-2 is a variant of that figure, which illustrates
the location of each Android component in the AOSP sources. Obviously, a lot of key
components come from frameworks/base/, which is where the bulk of Android’s “brains”
are located. It’s in fact worth taking a closer look at that directory and at system/core/,
in Tables 3-2 and 3-3 respectively, as they contain a large chunk of the moving parts
you’ll likely be interested in interfacing with or modifying as an embedded developer.

Inside the AOSP | 87

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-2. Android’s architecture

Table 3-2. Content summary for frameworks/base/ in 2.3/Gingerbread
Directory Content

cmds Framework-related commands and daemons

core The android.* packages

data Fonts and sounds

graphics 2D graphics and Renderscript

include C-language include files

keystore Security key store

libs C libraries

location Location provider

media Media Service, StageFright, codecs, etc.

native Native code for some framework components

obex Bluetooth Obex

opengl OpenGL library and Java code

packages A few core packages such as the Status Bar

services System services

88 | Chapter 3: AOSP Jump-Start

www.it-ebooks.info

http://www.it-ebooks.info/

Directory Content

telephony Telephony API, which talks to the rild radio layer interface

tools A few core tools such as aapt and aidl

voip RTP and SIP APIs

vpn VPN Manager

wifi Wifi Manager and API

In addition to base/, frameworks/ contained few other directories at the time of 2.3/
Gingerbread. In between that version and 4.2/Jelly Bean, frameworks/base/ has gone
through a number of cleanups, and several parts of it have been moved up a directory
level and into frameworks/ (Table 3-4). frameworks/base/media/ for instance, is now
frameworks/av/media/ instead. Also, frameworks/native/ now contains several native
libraries and system services that were previously in frameworks/base/.

Table 3-3. Content summary for system/core/ in 2.3/Gingerbread
Directory Content

adba The ADB daemon and client

cpio mkbootfs tool used to generate RAM disk imagesb

debuggerd debuggerd command mentioned in Chapter 2 and covered in Chapter 6

fastboot fastboot utility used to communicate with Android bootloaders using the “fastboot”
protocol

include C-language headers for all things “system”

init Android’s init

libacc “Almost” C Compiler library for compiling C-like code; used by RenderScript in 2.3/
Gingerbreadc

libcutils Various C utility functions not part of the standard C library; used throughout the
tree

libdiskconfig For reading and configuring disks; used by vold

liblinenoise BSD-licensed readline() replacement from http://github.com/antirez/linenoise;
used by Android’s shell

liblog Logging library that interfaces with the Android kernel logger as seen in Figure 2-2;
used throughout the tree

libmincrypt Basic RSA and SHA functions; used by the recovery mechanism and mkbootimg
utility

libnetutils Network configuration library; used by netd

libpixelflinger Low-level graphic rendering functions

libsysutils Utility functions for talking with various components of the system, including the
framework; used by netd and vold

libzipfile Wrapper around zlib for dealing with ZIP files

logcat The logcat utility

Inside the AOSP | 89

www.it-ebooks.info

http://github.com/antirez/linenoise
http://www.it-ebooks.info/

Directory Content

logwrapper Utility that forks and runs the command passed to it while redirecting stdout and
stderr to Android’s logger

mkbootimg Utility for creating a boot image using a RAM disk and a kernel

netcfg Network configuration utility

rootdir Default Android root directory structure and content

run-as Utility for running a program as a given user ID

sdcard Emulates FAT using FUSE

sh Android shell

toolbox Android’s Toolbox (BusyBox replacement)
a Some entries have been omitted because they aren’t currently used by any part of the AOSP. They are likely legacy components.
b This is used to create both the default RAM disk image used to boot Android and the recovery image.
c This description might not make any sense to you unless you know what RenderScript is. Have a look at Google’s documentation
for RenderScript; the relevance of libacc in that context should be clearer.

Table 3-4. Major additions made to system/core/ between 2.3/Gingerbread and 4.2/
Jelly Bean.

Directory Content

charger Full-screen battery state display

fs_mgr Filesystem manager

gpttool Tool for dealing with GPT (UEFI) partition table

libcorkscrew Debugging/backtrace library

libion Library for interfacing with the ION driver

libnl_2 Library for handling NetLink sockets

libsuspend Library for interfacing with the kernel’s power management functionality, including autosleep

libsync Library for interface with /dev/sw_sync
libusbhost Library for USB host mode handling

Apart from core/, system/ also includes a few more directories, such as netd/ and vold/,
which contain the netd and vold daemons, respectively.

In addition to the top-level directories, the root directory also includes a single Make
file. That file is, however, mostly empty, its main use being to include the entry point to
Android’s build system:

DO NOT EDIT THIS FILE
include build/core/main.mk
DO NOT EDIT THIS FILE

As you’ve likely figured out already, there’s far more to the AOSP than what I just pre‐
sented to you. There are, after all, more than 14,000 directories and 100,000 files in 2.3.x/

90 | Chapter 3: AOSP Jump-Start

www.it-ebooks.info

http://www.it-ebooks.info/

Gingerbread, and more than 40,000 directories and 265,000 files in 4.2/Jelly Bean. By
most standards, it’s a fairly large project. In comparison, early 3.0.x releases of the Linux
kernel have about 2,000 directories and 35,000 files. We will certainly get the chance to
explore more parts of the AOSP’s functionality and sources as we move forward. I highly
recommend, though, that you start exploring and experimenting with the sources in
earnest, as it will likely take several months before you can comfortably navigate your
way through.

Build Basics
So now we have an AOSP and a general idea of what’s inside, so let’s get it up and running.
There’s one last thing we need to do before we can build it, though. We need to make
sure we’ve got all the packages necessary on our Ubuntu install. Here are the instructions
for 64-bit Ubuntu 11.04, assuming we’re building 2.3/Gingerbread. Even if you are using
an older or newer version of some Debian-based Linux distribution, the instructions
will be fairly similar. (See also “Building on Virtual Machines or Non-Linux Systems”
on page 98 for other systems on which you can build the AOSP.) As I mentioned earlier,
refer to Google’s Initializing a Build Environment for the latest version of packages
required to build recent AOSPs on more recent Ubuntu versions.

Build System Setup
First, let’s get some of the basic packages installed on our development system. You
might have some of these already installed as part of other development work you’ve
been doing, and that’s fine. Ubuntu’s package management system will ignore your
request to install those packages.

Note that the following commands are broken down on several lines to
fit this book’s width. The use of the \ character at the end of a line on
the shell forces it to start over on another line (the one starting with the
> character) to give you the chance to continue entering your command.
As such, you’re expected to type the \ characters at the end of the lines
in the following commands, but the > at the beginning of the subsequent
lines isn’t something you type; it’s inserted by the shell. Other com‐
mands in this book use the same trick for presentation purposes.

$ sudo apt-get install bison flex gperf git-core gnupg zip tofrodos \
> build-essential g++-multilib libc6-dev libc6-dev-i386 ia32-libs mingw32 \
> zlib1g-dev lib32z1-dev x11proto-core-dev libx11-dev \
> lib32readline5-dev libgl1-mesa-dev lib32ncurses5-dev

You might also need to fix a few symbolic links:

Build Basics | 91

www.it-ebooks.info

http://source.android.com/source/initializing.html
http://www.it-ebooks.info/

$ sudo ln -s /usr/lib32/libstdc++.so.6 /usr/lib32/libstdc++.so
$ sudo ln -s /usr/lib32/libz.so.1 /usr/lib32/libz.so

Finally, you need to install Sun’s JDK; it’s “officially” discouraged to use the OpenJDK
with the AOSP (see this posting by Google’s Jean-Baptiste Queru), though some people
are able to use it successfully (see sidebar below) and gcj won’t do. In Ubuntu, you used
to be able to get the JDK by using the following sequence of commands:

$ sudo add-apt-repository "deb http://archive.canonical.com/ natty partner"
$ sudo apt-get update
$ sudo apt-get install sun-java6-jdk

Unfortunately there seems to have been some disagreement between Canonical (the
company behind Ubuntu) and Oracle, and these instructions no longer work at the time
of this writing. Instead, you should refer to Ubuntu’s instructions for getting the JDK
version 6 working on your host. Note that version 7 doesn’t work at the time of this
writing for the AOSP. Essentially, the Ubuntu instructions explain that you need to get
the JDK binary from Oracle’s site and install it. Here’s a slightly modified version of the
currently published instructions, which you’re likely going to have to adapt to the latest
version of the JDK:

$ chmod u+x jdk-6u38-linux-x64.bin
$./jdk-6u38-linux-x64.bin
$ sudo mkdir -p /usr/lib/jvm
$ sudo mv jdk1.6.0_38 /usr/lib/jvm/
$ sudo update-alternatives --install "/usr/bin/java" "java" \
> "/usr/lib/jvm/jdk1.6.0_38/bin/java" 1
$ sudo update-alternatives --install "/usr/bin/javac" "javac" \
> "/usr/lib/jvm/jdk1.6.0_38/bin/javac" 1
$ sudo update-alternatives --install "/usr/bin/javah" "javah" \
> "/usr/lib/jvm/jdk1.6.0_38/bin/javah" 1
$ sudo update-alternatives --install "/usr/bin/javadoc" "javadoc" \
> "/usr/lib/jvm/jdk1.6.0_38/bin/javadoc" 1
$ sudo update-alternatives --install "/usr/bin/jar" "jar" \
> "/usr/lib/jvm/jdk1.6.0_38/bin/jar" 1

You’ll then have to run the following commands and select the version you just installed:
$ sudo update-alternatives --config java
There are 2 choices for the alternative java (providing /usr/bin/java).

 Selection Path Priority Status

* 0 /usr/lib/jvm/java-6-openjdk-amd64/jre/bin/java 1061 auto mode
 1 /usr/lib/jvm/java-6-openjdk-amd64/jre/bin/java 1061 manual mode
 2 /usr/lib/jvm/jdk1.6.0_38/bin/java 1 manual mode

Press enter to keep the current choice[*], or type selection number: 2
$ sudo update-alternatives --display java
java - manual mode
 link currently points to /usr/lib/jvm/jdk1.6.0_38/bin/java
...

92 | Chapter 3: AOSP Jump-Start

www.it-ebooks.info

https://groups.google.com/forum/?fromgroups=#!topic/android-building/IGCVGp9huLg
https://help.ubuntu.com/community/Java#Oracle_.28Sun.29_Java_6
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.it-ebooks.info/

$ sudo update-alternatives --config javac
...
$ sudo update-alternatives --config javah
...
$ sudo update-alternatives --config javadoc
...
$ sudo update-alternatives --config jar
...

As you can see, Oracle’s JDK and the OpenJDK can coexist on the same Ubuntu instal‐
lation. You just need to make sure the defaults point to the right JDK as needed. The
above instructions have you installing Oracle’s JDK systemwide and changing the de‐
faults of some commands to use the binaries in that package instead of whatever was
installed by default in Ubuntu. Nothing precludes you from installing Oracle’s JDK
somewhere into your home directory and changing the PATH variable to point to the
bin/ directory extracted by the running of Oracle’s installation binary.

Using the OpenJDK instead of Oracle’s JDK
Following the rules can sometimes be boring. Despite the official recommendations to
stick to Oracle’s JDK, many have actually successfully used the OpenJDK to build the
AOSP. Here’s a patch from Linaro’s Bernhard Rosenkränzer that allows you to build the
AOSP with the OpenJDK:

diff --git a/core/main.mk b/core/main.mk
index 87488f4..32e3aec 100644
--- a/core/main.mk
+++ b/core/main.mk
@@ -125,7 +125,14 @@ endif
 # Check for the correct version of java
 java_version := $(shell java -version 2>&1 | head -n 1 | grep '^java .*[
 "]1\.6[\. "$$]')
 ifneq ($(shell java -version 2>&1 | grep -i openjdk),)
-java_version :=
+$(warning **)
+$(warning AOSP errors out when using OpenJDK, saying you need to use)
+$(warning Java SE 1.6 instead.)
+$(warning A build with OpenJDK seems to work fine though - if you)
+$(warning run into any Java errors, you may want to try using the)
+$(warning version required by AOSP though.)
+$(warning **)
+#java_version :=
 endif
 ifeq ($(strip $(java_version)),)
 $(info **)

A few Linaro engineers report they have no problems either compiling the AOSP this
way or running the resulting images. Others seem to report javadoc issues, as Google’s

Build Basics | 93

www.it-ebooks.info

https://groups.google.com/forum/?fromgroups=#!topic/android-building/IGCVGp9huLg
http://www.it-ebooks.info/

Jean-Baptiste Queru hints. We can hope that future efforts will provide further evidence
as to the viability of using the OpenJDK.

Your system is now ready to build Android. Obviously you don’t need to do this package
installation process every time you build Android. You’ll need to do it only once for
every Android development system you set up.

Building Android
We are now ready to build Android. Let’s go to the directory where we downloaded
Android and configure the build system:

$ cd ~/android/aosp-2.3.x
$. build/envsetup.sh
including device/acme/coyotepad/vendorsetup.sh
including device/htc/passion/vendorsetup.sh
including device/samsung/crespo4g/vendorsetup.sh
including device/samsung/crespo/vendorsetup.sh
$ lunch

You're building on Linux

Lunch menu... pick a combo:
 1. generic-eng
 2. simulator
 3. full_passion-userdebug
 4. full_crespo4g-userdebug
 5. full_crespo-userdebug

Which would you like? [generic-eng] ENTER

==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=generic
TARGET_BUILD_VARIANT=eng
TARGET_SIMULATOR=false
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=arm
HOST_ARCH=x86
HOST_OS=linux
HOST_BUILD_TYPE=release
BUILD_ID=GINGERBREAD
==

For 4.2/Jelly Bean, the same operations on Ubuntu 12.04 would yield this instead:
$ cd ~/android/aosp-4.2
$. build/envsetup.sh

94 | Chapter 3: AOSP Jump-Start

www.it-ebooks.info

https://groups.google.com/forum/?fromgroups=#!topic/android-building/IGCVGp9huLg
http://www.it-ebooks.info/

including device/asus/grouper/vendorsetup.sh
including device/asus/tilapia/vendorsetup.sh
including device/generic/armv7-a-neon/vendorsetup.sh
including device/generic/armv7-a/vendorsetup.sh
including device/generic/mips/vendorsetup.sh
including device/generic/x86/vendorsetup.sh
including device/lge/mako/vendorsetup.sh
including device/samsung/maguro/vendorsetup.sh
including device/samsung/manta/vendorsetup.sh
including device/samsung/toroplus/vendorsetup.sh
including device/samsung/toro/vendorsetup.sh
including device/ti/panda/vendorsetup.sh
including sdk/bash_completion/adb.bash
$ lunch

You're building on Linux

Lunch menu... pick a combo:
 1. full-eng
 2. full_x86-eng
 3. vbox_x86-eng
 4. full_mips-eng
 5. full_grouper-userdebug
 6. full_tilapia-userdebug
 7. mini_armv7a_neon-userdebug
 8. mini_armv7a-userdebug
 9. mini_mips-userdebug
 10. mini_x86-userdebug
 11. full_mako-userdebug
 12. full_maguro-userdebug
 13. full_manta-userdebug
 14. full_toroplus-userdebug
 15. full_toro-userdebug
 16. full_panda-userdebug

Which would you like? [full-eng] ENTER
==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=4.2
TARGET_PRODUCT=full
TARGET_BUILD_VARIANT=eng
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=arm
TARGET_ARCH_VARIANT=armv7-a
HOST_ARCH=x86
HOST_OS=linux
HOST_OS_EXTRA=Linux-3.2.0-35-generic-x86_64-with-Ubuntu-12.04-precise
HOST_BUILD_TYPE=release
BUILD_ID=JOP40C
OUT_DIR=out
==

Build Basics | 95

www.it-ebooks.info

http://www.it-ebooks.info/

In both cases, note that we typed a period, a space, and then build/envsetup.sh. This
forces the shell to run the envsetup.sh script within the current shell. If we were to just
run the script, the shell would spawn a new shell and run the script in that new shell.
That would be useless since envsetup.sh defines new shell commands, such as lunch,
and sets up environment variables required for the rest of the build.

We will explore envsetup.sh and lunch in more detail later. For the moment, though,
note that the generic-eng combo in 2.3/Gingerbread and full-eng combo in 4.2/Jelly
Bean means that we configured the build system to create images for running in the
Android emulator. This is the same QEMU emulator software used by developers to
test their apps when developing using the SDK on a workstation. Here it will be running
our own custom images instead of the default ones shipped with the SDK. It’s also the
same emulator that was used by the Android development team to develop Android
while there were no devices for it yet. So while it’s not real hardware and is therefore by
no means a perfect target, it’s still more than sufficient to cover most of the terrain we
need to cover. Once you know your specific target, you should be able to adapt the
instructions found in the rest of this book, possibly with some help from the book
Building Embedded Linux Systems, to get your custom Android images loaded on your
device and your hardware to boot them.

Now that the environment has been set up, we can actually build Android:
$ make -j16
==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=generic
TARGET_BUILD_VARIANT=eng
TARGET_SIMULATOR=false
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=arm
HOST_ARCH=x86
HOST_OS=linux
HOST_BUILD_TYPE=release
BUILD_ID=GINGERBREAD
==
Checking build tools versions...
find: `frameworks/base/frameworks/base/docs/html': No such file or directory
find: `out/target/common/docs/gen': No such file or directory
find: `frameworks/base/frameworks/base/docs/html': No such file or directory
find: `out/target/common/docs/gen': No such file or directory
find: `frameworks/base/frameworks/base/docs/html': No such file or directory
find: `out/target/common/docs/gen': No such file or directory
find: `frameworks/base/frameworks/base/docs/html': No such file or directory
find: `out/target/common/docs/gen': No such file or directory
find: `frameworks/base/frameworks/base/docs/html': No such file or directory
find: `out/target/common/docs/gen': No such file or directory
host Java: apicheck (out/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/c

96 | Chapter 3: AOSP Jump-Start

www.it-ebooks.info

http://www.it-ebooks.info/

lasses)
Header: out/host/linux-x86/obj/include/libexpat/expat.h
Header: out/host/linux-x86/obj/include/libexpat/expat_external.h
Header: out/target/product/generic/obj/include/libexpat/expat.h
Header: out/target/product/generic/obj/include/libexpat/expat_external.h
Header: out/host/linux-x86/obj/include/libpng/png.h
Header: out/host/linux-x86/obj/include/libpng/pngconf.h
Header: out/host/linux-x86/obj/include/libpng/pngusr.h
Header: out/target/product/generic/obj/include/libpng/png.h
Header: out/target/product/generic/obj/include/libpng/pngconf.h
Header: out/target/product/generic/obj/include/libpng/pngusr.h
Header: out/target/product/generic/obj/include/libwpa_client/wpa_ctrl.h
Header: out/target/product/generic/obj/include/libsonivox/eas_types.h
Header: out/target/product/generic/obj/include/libsonivox/eas.h
Header: out/target/product/generic/obj/include/libsonivox/eas_reverb.h
Header: out/target/product/generic/obj/include/libsonivox/jet.h
Header: out/target/product/generic/obj/include/libsonivox/ARM_synth_constants_gn
u.inc
host Java: clearsilver (out/host/common/obj/JAVA_LIBRARIES/clearsilver_intermedi
ates/classes)
target Java: core (out/target/common/obj/JAVA_LIBRARIES/core_intermediates/class
es)
host Java: dx (out/host/common/obj/JAVA_LIBRARIES/dx_intermediates/classes)
Notice file: frameworks/base/libs/utils/NOTICE -- out/host/linux-x86/obj/NOTICE_
FILES/src//lib/libutils.a.txt
Notice file: system/core/libcutils/NOTICE -- out/host/linux-x86/obj/NOTICE_FILES
/src//lib/libcutils.a.txt
...

Note that several lines, especially at the end of the output, are wrapped
around to the following line because they wouldn’t fit in the width per‐
mitted by this book’s pages. You will see this occurring in several of the
output screens printed throughout this book. I’ve tried to keep the line-
wrap at 80 characters, though sometimes I could get away with a little
more without it being too obvious.
In sum, make sure you keep an eye out for wrapped lines in output in
the rest of the book.

Now is a good time to go for a snack or to watch tonight’s hockey game—it’s a Canadian
thing, I can’t help it. On a more serious note, your build time will obviously depend on
your system’s capabilities. On a laptop with a quad-core CORE i7 Intel processor with
hyperthreading enabled and 8GB of RAM, this actual command will take about 20
minutes to build 2.3/Gingerbread and 80 minutes to build 4.2/Jelly Bean. On an older
laptop with a dual-core Centrino 2 Intel processor and 2GB of RAM, a make -j4 would
take about an hour to build 2.3/Gingerbread—I wouldn’t try building 4.2/Jelly Bean on
such a machine. Note that the -j parameter of make allows you to specify how many
jobs to run in parallel. Some say that it’s best to use your number of processors times 2,

Build Basics | 97

www.it-ebooks.info

http://www.it-ebooks.info/

which is what I’m doing here. Others say it’s best to add 2 to the number of processors
you have. Following that advice, I would have used 10 and 4 instead of 16 and 4.

Generally speaking, the AOSP is a very heavy piece of software to build. I highly rec‐
ommend you use the most powerful system you can get your hands on, no holds barred.
Having lots of RAM is also very highly recommended. In fact, if the entire AOSP tree
can fit in the filesystem cache maintained by the kernel in RAM, then you’ll minimize
your build times. You can also use solid-state drives instead of regular hard drives.
They’ve been shown to significantly reduce the AOSP’s build times.

Building on Virtual Machines or Non-Linux Systems
I often get asked about building the AOSP in virtual machines; most often because the
development team, or their IT department, is standardized on Windows. While I’ve seen
this work and have put together images to do that myself, your results will vary. It’ll
usually take more than twice as much time to build in a VM than building natively on
the same system. So if you’re going to do a lot of work on the AOSP, I strongly suggest
you build it natively. And, yes, this involves having a Linux machine at hand.

An increasing number of developers also prefer Mac OS X over Linux and Windows,
including many at Google itself. Hence, the official instructions at http://
source.android.com also describe how to build on a Mac. These instructions, though,
tend to break after Mac OS updates. Fortunately for Mac-based developers, they are
many and they are rather zealous. Hence, you’ll eventually find updated instructions on
the web or on the various Google Groups about how to build the AOSP on your new
version of OS X. Here’s one posting explaining how to build Gingerbread on OS X Lion:
Building Gingerbread on OS X Lion. Bear in mind, though, that as I mentioned in
Chapter 1, Google’s own Android build farms are Ubuntu based. If you choose to build
on OS X, you’ll likely always be playing catch-up. At worst, you can use a VM as in the
Windows case.

If you do choose to go the VM route, make sure you configure the VM to use as many
CPUs as there are available in your system. Most BIOSes I’ve seen seem to disable by
default the instruction sets that allow multiple-CPU virtualization. VirtualBox, for in‐
stance, will complain about some obscure error if you try to allocate more than one CPU
to an image while those instruction sets are disabled. You must go to the BIOS and enable
those options for your VM software to be able to grant the guest OS multiple CPUs.

There are a few other things to consider regarding the build. First, note that in between
printing out the build configuration and the printing of the first output of the actual
build (where it prints out: host Java: apicheck (out/host/common/o...), there will
be a rather long delay where nothing will get printed out, save for the “No such file or
directory” warnings. I’ll explain this delay in more detail later, but suffice it to say that

98 | Chapter 3: AOSP Jump-Start

www.it-ebooks.info

http://source.android.com
http://source.android.com
http://groups.google.com/group/android-building/msg/4b9e6168ecae68a5
http://www.it-ebooks.info/

the build system is taking that time to figure out the rules of how to build every part of
the AOSP.

Note also that you’ll see plenty of warning statements. These are rather “normal,” not
so much in terms of maintaining software quality, but in that they are pervasive in
Android’s build. They usually won’t have an impact on the final product being compiled.
So, contrary to the best of my software engineering instincts, I have to recommend you
completely ignore warnings and stick to fixing errors only. Unless, of course, those
warnings stem from software you added yourself. By all means, make sure you get rid
of those warnings.

Running Android
With the build completed, all you need to do is start the emulator to run your own
custom-built images:

$ emulator &

This will start the emulator window that will boot into a full Android environment as
illustrated in Figure 3-3 (showing 2.3/Gingerbread).

Figure 3-3. Android emulator running custom images

Running Android | 99

www.it-ebooks.info

http://www.it-ebooks.info/

You can then interact with the AOSP you just built as if it were running on a real device.
Since your monitor is likely not a touch screen, however, you will need to use your
mouse as if it were your finger. A single touch is a click, and swiping is done by holding
down the mouse button, moving around, and letting go of the mouse button to signify
that your finger has been removed from the touch screen. You also have a full keyboard
at your disposal, with all the buttons you would find on a phone equipped with a
QWERTY keyboard, although you can use your regular keyboard to input text in text
boxes.

Despite its features and realism, the emulator does have its issues. For one thing, it takes
some time to boot. It will take longest to boot the first time, because Dalvik is creating
a JIT cache for the apps running on the phone. Note that the creation of the Dalvik cache
isn’t unique to the emulator. No matter what type of device you run Android on, modern
Dalvik needs a JIT cache, whether it be created at boot time or, as we’ll see in Chap‐
ter 7, at build time.

Even after the first boot, though, you might find the emulator heavy, especially if you’re
in a modify-compile-test loop. Also, it doesn’t perfectly emulate everything. For in‐
stance, it traditionally has a hard time firing off rotation change events when it’s made
to rotate using F11 or F12. This, though, is mostly an issue for app developers.

If for any reason you close the shell where you had configured, built, and started Android
—or if you need to start a new one and have access to all the tools and binaries created
from the build, you must invoke the envsetup.sh script and the lunch commands again
in order to set up environment variables. Here are commands from a new shell, for
instance:

$ cd ~/android/aosp-2.3.x
$ emulator &
No command 'emulator' found, did you mean:
 Command 'qemulator' from package 'qemulator' (universe)
emulator: command not found
$. build/envsetup.sh
$ lunch

You're building on Linux

Lunch menu... pick a combo:
 1. generic-eng
 2. simulator
 3. full_passion-userdebug
 4. full_crespo4g-userdebug
 5. full_crespo-userdebug

Which would you like? [generic-eng] ENTER

==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4

100 | Chapter 3: AOSP Jump-Start

www.it-ebooks.info

http://www.it-ebooks.info/

TARGET_PRODUCT=generic
TARGET_BUILD_VARIANT=eng
...
==
$ emulator &
$

Note that the second time we issued emulator, the shell didn’t complain that the com‐
mand was missing anymore. The same goes for a lot of other Android tools, such as the
adb command we’re about to look at. Note also that we didn’t need to issue any make
commands, because we had already built Android. In this case, we just needed to make
sure the environment variables were properly set in order for the results of the previous
build to be available to us again.

Using the Android Debug Bridge (ADB)
One of the most interesting aspects of the development environment put together by
the Android development team is that you can shell into the running emulator, or any
real device connected through USB for that matter, using the adb tool:

$ adb shell
* daemon not running. starting it now on port 5037 *
* daemon started successfully *
cat /proc/cpuinfo
Processor : ARM926EJ-S rev 5 (v5l)
BogoMIPS : 405.50
Features : swp half thumb fastmult vfp edsp java
CPU implementer : 0x41
CPU architecture: 5TEJ
CPU variant : 0x0
CPU part : 0x926
CPU revision : 5

Hardware : Goldfish
Revision : 0000
Serial : 0000000000000000

This is issued in the same shell where you started the emulator.
This is the target’s shell, and cat is actually running on the “target” (i.e., the
emulator).

As you can see, the kernel running in the emulator reports that it’s seeing an ARM
processor, which is in fact the predominant platform used with Android. Also, the kernel
says it’s running on a platform called Goldfish. This is the code name for the emulator,
and you will see it in quite a few places.

Now that you’ve got a shell into the emulator and you are root, which is the default in
the emulator, you can run any command much as if you had shelled into a remote

Using the Android Debug Bridge (ADB) | 101

www.it-ebooks.info

http://www.it-ebooks.info/

machine or a traditional, network-connected embedded Linux system. The Android
Debug Bridge (ADB) is what makes this possible. To exit an ADB shell session, all you
need to do is type Ctrl-D:

CTRL-D
$

This is in the target shell.
This is back on the host.

When you start adb for the first time on the host, it starts a server in the background
whose job is to manage the connections to all Android devices connected to the host.
That was the part of the earlier output that said a daemon was being started on port
5037. You can actually ask that daemon what devices it sees:

$ adb devices
List of devices attached
emulator-5554 device
0000021459584822 device
emulator-5556 offline

This is the output with one emulator instance running, one device connected through
USB, and another emulator instance starting up. If there are multiple devices connected,
you can tell it which device you want to talk to using the -s flag to identify the serial
number of the device:

$ adb -s 0000021459584822 shell
$ id
uid=2000(shell) gid=2000(shell) groups=1003(graphics),1004(input), ...
$ su
su: permission denied

Note that in this case, I’m getting a $ for my shell prompt instead of a #. This means that
contrary to the earlier interaction, I’m not running as root, as can also be seen from the
output of the id command. This is actually a real commercial Android phone, and my
inability above to gain root privileges using the su command is typical. Hence, my ability
to make any modifications to this device will be fairly limited. Unless, of course, I find
some way to “root” the phone (i.e., gain root access).

Historically, device manufacturers have been very reluctant for various reasons to give
root access to their devices and have put in a number of provisions to make that as
difficult as possible, if not impossible. That’s why “rooting” devices is held up as a holy
grail by many power users and hackers. As of early 2013, some manufacturers, including
Motorola, HTC, and Sony Mobile, have spelled out policy changes that seem to be aimed
at making it easier for users to root their devices, with caveats of course. But this isn’t
mainstream yet. And, unfortunately, it’s subject to the whims of network operators, who
can still decide to lock down devices left unlocked by the handset manufacturer.

102 | Chapter 3: AOSP Jump-Start

www.it-ebooks.info

http://www.it-ebooks.info/

You may be tempted to try to root a commercial phone or device for
experimenting with Android platform development. I would suggest
you think this through carefully. While there are plenty of instructions
out there explaining how to replace your standard images with what is
often referred to as “custom ROMs” such as CyanogenMod and others,
you need to be aware that any false step could well result in “bricking”
the device (i.e., rendering it unbootable or erasing critical boot-time
code). You then have an expensive paperweight (hence the term “brick‐
ing”) instead of a phone.
If you want to experiment with running custom AOSP builds on real
hardware, I suggest you get yourself something like a BeagleBoard xM
or a PandaBoard. These boards are made for tinkering. If nothing else,
they don’t have a built-in flash chip that you may risk damaging. Instead,
the SoCs on those devices boot straight from SD cards. Hence, fixing a
broken image is simply a matter of unplugging the SD card from the
board, connecting it to your workstation, reprogramming it, and plug‐
ging it back into the board.
Some commercial phones and devices allow you to “unlock” the firm‐
ware, often with the fastboot oem unlock command, and therefore you
can burn your own images with less risk of bricking your device. Still,
the bootloader in those cases becomes the single point of failure; if you
damage it for some reason, you could still end up with a bricked device.
The best configuration is one where you can reprogram all storage de‐
vices no matter what commands you mistype.

adb can of course do a lot more than just give you a shell, and I encourage you to start
it without any parameters to look at its usage output:

$ adb
Android Debug Bridge version 1.0.26

 -d - directs command to the only connected USB device
 returns an error if more than one USB device is
 present.
 -e - directs command to the only running emulator.
 returns an error if more than one emulator is
 running.
 -s <serial number> - directs command to the USB device or emulator
 with the given serial number. Overrides
 ANDROID_SERIAL
...
device commands:
 adb push <local> <remote> - copy file/dir to device
 adb pull <remote> [<local>] - copy file/dir from device
 adb sync [<directory>] - copy host->device only if changed
 (-l means list but don't copy)
 (see 'adb help all')
 adb shell - run remote shell interactively

Using the Android Debug Bridge (ADB) | 103

www.it-ebooks.info

http://www.it-ebooks.info/

 adb shell <command> - run remote shell command
 adb emu <command> - run emulator console command
...

You can, for instance, use adb to dump the data contained in the main logger buffer:
$ adb logcat
I/DEBUG (30): debuggerd: Sep 10 2011 13:44:19
I/Netd (29): Netd 1.0 starting
I/Vold (28): Vold 2.1 (the revenge) firing up
D/qemud (38): entering main loop
D/Vold (28): USB mass storage support is not enabled in the kernel
D/Vold (28): usb_configuration switch is not enabled in the kernel
D/Vold (28): Volume sdcard state changing -1 (Initializing) -> 0 (No-Media
)
D/qemud (38): fdhandler_accept_event: accepting on fd 9
D/qemud (38): created client 0xe078 listening on fd 10
D/qemud (38): client_fd_receive: attempting registration for service 'boot-
properties'
D/qemud (38): client_fd_receive: -> received channel id 1
D/qemud (38): client_registration: registration succeeded for client 1
I/qemu-props(54): connected to 'boot-properties' qemud service.
I/qemu-props(54): receiving..
I/qemu-props(54): received: qemu.sf.lcd_density=160
I/qemu-props(54): receiving..
I/qemu-props(54): received: dalvik.vm.heapsize=16m
I/qemu-props(54): receiving..
D/qemud (38): fdhandler_event: disconnect on fd 10
I/qemu-props(54): exiting (2 properties set).
D/AndroidRuntime(32):
D/AndroidRuntime(32): >>>>>> AndroidRuntime START com.android.internal.os.Zyg
oteInit <<<<<<
D/AndroidRuntime(32): CheckJNI is ON
I/ (33): ServiceManager: 0xad50
...

This is very useful for observing the runtime behavior of key system components, in‐
cluding services run by the System Server.

You can also copy files to and from the device:
$ adb push data.txt /data/local
1 KB/s (87 bytes in 0.043s)
$ adb pull /proc/config.gz
95 KB/s (7087 bytes in 0.072s)

Again, given its centrality to Android development, I invite you to read up on adb’s use.
We will continue using it throughout the book and cover it in much greater detail in
Chapter 6. Keep in mind, though, that adb can have its quirks. First and foremost, many
have found its host-side daemon to be somewhat flaky. For some reason or another, it
sometimes doesn’t correctly identify the state of connected devices and continues to
state that they are offline while you try connecting to them. Or adb might just hang on

104 | Chapter 3: AOSP Jump-Start

www.it-ebooks.info

http://www.it-ebooks.info/

2. It’s actually somewhat interesting that the Android development team felt the need to build such functionality
right into adb. Clearly they were encountering issues with that daemon themselves.

3. Tim is the maintainer of http://elinux.org, the guy behind the Embedded Linux Conference, and the chair of
the Linux Foundation’s CE Workgroup, and he’s been doing a lot of cool Android stuff at Sony.

the command line waiting for the device while the device is clearly active and able to
receive ADB commands. The solution to those issues is almost invariably to kill the
host-side daemon:2

$ adb kill-server

Not to worry—the next time you issue any adb command, the daemon will automatically
be restarted. It’s unclear what causes this behavior, and maybe this problem will get
resolved at some point in the future. In the meantime, keep in mind that if you see some
odd behavior when using ADB, killing the host-side daemon is usually something you
want to try before investigating other potential issues.

As I said above, we’ll discuss ADB in much greater detail in Chapter 6. Still, another
source of information on adb is the Android Debug Bridge part of Google’s Android
Developers Guide. As Tim Bird3 recommends, you want to print a copy and put it under
your pillow.

Mastering the Emulator
As I said earlier, you can go a long way in platform development by simply using the
emulator. It effectively emulates an ARM target, and more recently an x86 target, too,
with a minimal set of hardware. We’ll spend some time here going through some more
advanced aspects of dealing with the emulator. As with many Android pieces, the em‐
ulator is quite a complex piece of software in and of itself. Still, we can get a very good
idea of its capabilities by surveying a few key features.

Earlier we started the emulator by simply typing:
$ emulator &

But the emulator command can also take quite a few parameters. You can see the online
help by adding the -help flag on the command line:

$ emulator -help
Android Emulator usage: emulator [options] [-qemu args]
 options:
 -sysdir <dir> search for system disk images in <dir>
 -system <file> read initial system image from <file>
 -datadir <dir> write user data into <dir>
 -kernel <file> use specific emulated kernel
 -ramdisk <file> ramdisk image (default <system>/ramdisk.img
 -image <file> obsolete, use -system <file> instead
 -init-data <file> initial data image (default <system>/

Mastering the Emulator | 105

www.it-ebooks.info

http://elinux.org
http://developer.android.com/tools/help/adb.html
http://www.it-ebooks.info/

 userdata.img
 -initdata <file> same as '-init-data <file>'
 -data <file> data image (default <datadir>/userdata-
 qemu.img
 -partition-size <size> system/data partition size in MBs
...

One especially useful flag is -kernel. It allows you to tell the emulator to use another
kernel than the default prebuilt one found in prebuilt/android-arm/kernel/:

$ emulator -kernel path_to_your_kernel_image/zImage

If you want to use a kernel that has module support, for instance, you’ll need to build
your own, because the prebuilt one doesn’t have module support enabled by default.
Also, by default, the emulator won’t show you the kernel’s boot messages. You can,
however, pass the -show-kernel flag to see them:

$ emulator -show-kernel
Uncompressing Linux...
................................ done, booting the kernel.
Initializing cgroup subsys cpu
Linux version 2.6.29-00261-g0097074-dirty (digit@digit.mtv.corp.google.com) (gcc
 version 4.4.0 (GCC)) #20 Wed Mar 31 09:54:02 PDT 2010
CPU: ARM926EJ-S [41069265] revision 5 (ARMv5TEJ), cr=00093177
CPU: VIVT data cache, VIVT instruction cache
Machine: Goldfish
Memory policy: ECC disabled, Data cache writeback
Built 1 zonelists in Zone order, mobility grouping on. Total pages: 24384
Kernel command line: qemu=1 console=ttyS0 android.checkjni=1 android.qemud=ttyS1
 android.ndns=3
Unknown boot option `android.checkjni=1': ignoring
Unknown boot option `android.qemud=ttyS1': ignoring
Unknown boot option `android.ndns=3': ignoring
PID hash table entries: 512 (order: 9, 2048 bytes)
Console: colour dummy device 80x30
Dentry cache hash table entries: 16384 (order: 4, 65536 bytes)
Memory: 96MB = 96MB total
Memory: 91548KB available (2616K code, 681K data, 104K init)
Calibrating delay loop... 403.04 BogoMIPS (lpj=2015232)
Mount-cache hash table entries: 512
Initializing cgroup subsys debug
Initializing cgroup subsys cpuacct
Initializing cgroup subsys freezer
CPU: Testing write buffer coherency: ok
...

You can also have the emulator print out information about its own execution using the
-verbose flag, thereby allowing you to see, for example, which images files it’s using:

$ emulator -verbose
emulator: found Android build root: /home/karim/android/aosp-2.3.x
emulator: found Android build out: /home/karim/android/aosp-2.3.x/out/target/pr
oduct/generic

106 | Chapter 3: AOSP Jump-Start

www.it-ebooks.info

http://www.it-ebooks.info/

emulator: locking user data image at /home/karim/android/aosp-2.3.x/out/targ
et/product/generic/userdata-qemu.img
emulator: selecting default skin name 'HVGA'
emulator: found skin-specific hardware.ini: /home/karim/android/aosp-2.3.x/sdk/e
mulator/skins/HVGA/hardware.ini
emulator: autoconfig: -skin HVGA
emulator: autoconfig: -skindir /home/karim/android/aosp-2.3.x/sdk/emulator/skins
emulator: keyset loaded from: /home/karim/.android/default.keyset
emulator: trying to load skin file '/home/karim/android/aosp-2.3.x/sdk/emulator/
skins/HVGA/layout'
emulator: skin network speed: 'full'
emulator: skin network delay: 'none'
emulator: no SD Card image at '/home/karim/android/aosp-2.3.x/out/target/product
/generic/sdcard.img'
emulator: registered 'boot-properties' qemud service
emulator: registered 'boot-properties' qemud service
emulator: Adding boot property: 'qemu.sf.lcd_density' = '160'
emulator: Adding boot property: 'dalvik.vm.heapsize' = '16m'
emulator: argv[00] = "emulator"
emulator: argv[01] = "-kernel"
emulator: argv[02] = "/home/karim/android/aosp-2.3.x/prebuilt/android-arm/kernel
/kernel-qemu"
emulator: argv[03] = "-initrd"
emulator: argv[04] = "/home/karim/android/aosp-2.3.x/out/target/product/generic/
ramdisk.img"
emulator: argv[05] = "-nand"
emulator: argv[06] = "system,size=0x4200000,initfile=/home/karim/android/aosp-2.
3.x/out/target/product/generic/system.img"
emulator: argv[07] = "-nand"
emulator: argv[08] = "userdata,size=0x4200000,file=/home/karim/android/aosp-2.3.
x/out/target/product/generic/userdata-qemu.img"
emulator: argv[09] = "-nand"
...

Up to this point, I’ve used the terms QEMU and emulator interchangeably. The reality,
though, is that the emulator command isn’t actually QEMU: It’s a custom wrapper
around it created by the Android development team. You can, however, interact with
the emulator’s QEMU by using the -qemu flag. Anything you pass after that flag is passed
on to QEMU and not the emulator wrapper:

$ emulator -qemu -h
QEMU PC emulator version 0.10.50Android, Copyright (c) 2003-2008 Fabrice Bellard
usage: qemu [options] [disk_image]

'disk_image' is a raw hard image image for IDE hard disk 0

Standard options:
-h or -help display this help and exit
-version display version information and exit
-M machine select emulated machine (-M ? for list)
-cpu cpu select CPU (-cpu ? for list)
-smp n set the number of CPUs to 'n' [default=1]

Mastering the Emulator | 107

www.it-ebooks.info

http://www.it-ebooks.info/

-numa node[,mem=size][,cpus=cpu[-cpu]][,nodeid=node]
-fda/-fdb file use 'file' as floppy disk 0/1 image
-hda/-hdb file use 'file' as IDE hard disk 0/1 image
...
$ emulator -qemu -...

We saw earlier how we can use adb to interact with the AOSP running within the em‐
ulator, and we just saw how we can use various options to change the way the emulator
is started. Interestingly, we can also control the emulator’s behavior at runtime by tel‐
neting into it. Every emulator instance that starts is assigned a port number on the host.
Look again at Figure 3-3 and check the top-left corner of the emulator’s window. The
number up there (5554 in this case) is the port number at which that emulator instance
is listening. The next emulator that starts simultaneously will get 5556, the next 5558,
and so on. To gain access to the emulator’s special console, you can use the regular telnet
command:

$ telnet localhost 5554
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Android Console: type 'help' for a list of commands
OK
help
Android console command help:

 help|h|? print a list of commands
 event simulate hardware events
 geo Geo-location commands
 gsm GSM related commands
 kill kill the emulator instance
 network manage network settings
 power power related commands
 quit|exit quit control session
 redir manage port redirections
 sms SMS related commands
 avd manager virtual device state
 window manage emulator window

try 'help <command>' for command-specific help
OK

Using that console, you can do some nifty tricks like redirecting a port from the host to
the target:

redir add tcp:8080:80
OK
redir list
tcp:8080 => 80
OK

108 | Chapter 3: AOSP Jump-Start

www.it-ebooks.info

http://www.it-ebooks.info/

From here on, anything accessing 8080 on your host will actually be speaking to what‐
ever is listening to port 80 on that emulated Android. Nothing listens to that port by
default on Android, but you can, for example, have BusyBox’s httpd running on Android
and connect to it in this way.

The emulator also exposes a few “magic” IPs to the emulated Android. IP address
10.0.2.2, for instance, is an alias to your workstation’s 127.0.0.1. If you have Apache
running on your workstation, you can open the emulator’s browser and type http://
10.0.2.2 and you’ll be able to browse whatever content is served up by Apache.

For more information on how to operate the emulator and its various options, have a
look at the Using the Android Emulator section of Google’s Android Developers
Guide. It’s written for an app developer audience, but it will still be very useful to you
even if you’re doing platform work.

Mastering the Emulator | 109

www.it-ebooks.info

http://developer.android.com/tools/devices/emulator.html
http://developer.android.com
http://developer.android.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

The Build System

The goal of the previous chapter was to get you up and running as quickly as possible
with custom AOSP development. There’s nothing precluding you from closing this book
at this point and starting to dig in and modify your AOSP tree to fit your needs. All you
need to do to test your modifications is to rebuild the AOSP, start the emulator again,
and, if need be, shell back into it using ADB. If you want to maximize your efforts,
however, you’ll likely want some insight into Android’s build system.

Despite its modularity, Android’s build system is fairly complex and doesn’t resemble
any of the mainstream build systems out there; none that are used for most open source
projects, at least. Specifically, it uses make in a fairly unconventional way and doesn’t
provide any sort of menuconfig-based configuration (or equivalent for that matter).
Android very much has its own build paradigm that takes some time to get used to. So
grab yourself a good coffee or two—things are about to get serious.

Like the rest of the AOSP, the build system is a moving target. So while
the following information should remain valid for a long time, you
should be on the lookout for changes in the AOSP version you’re using.

Comparison with Other Build Systems
Before I start explaining how Android’s build system works, allow me to begin by em‐
phasizing how it differs from what you might already know. First and foremost, unlike
most make-based build systems, the Android build system doesn’t rely on recursive
makefiles. Unlike the Linux kernel, for instance, there isn’t a top-level makefile that will
recursively invoke subdirectories’ makefiles. Instead, there is a script that explores all
directories and subdirectories until it finds an Android.mk file, whereupon it stops and
doesn’t explore the subdirectories underneath that file’s location—unless the
Android.mk found instructs the build system otherwise. Note that Android doesn’t rely

111

www.it-ebooks.info

http://www.it-ebooks.info/

on makefiles called Makefile. Instead, it’s the Android.mk files that specify how the local
“module” is built.

Android build “modules” have nothing to do with kernel “modules.”
Within the context of Android’s build system, a “module” is any com‐
ponent of the AOSP that needs to be built. This might be a binary, an
app package, a library, etc., and it might have to be built for the target
or the host, but it’s still a “module” with regards to the build system.

How Many Build Modules?
Just to give you an idea of how many modules can be built by the AOSP, try running
this command in your tree:

$ find . -name Android.mk | wc -l

This will look for all Android.mk files and count how many there are. In 2.3.7/Ginger‐
bread there are 1,143 and in 4.2/Jelly Bean, 2,037.

Another Android specificity is the way the build system is configured. While most of
us are used to systems based on kernel-style menuconfig or GNU autotools (i.e., auto‐
conf, automake, etc.), Android relies on a set of variables that are either set dynamically
as part of the shell’s environment by way of envsetup.sh and lunch or are defined statically
ahead of time in a buildspec.mk file. Also—always seeming to be a surprise to newcomers
—the level of configurability made possible by Android’s build system is fairly limited.
So while you can specify the properties of the target for which you want the AOSP to
be built and, to a certain extent, which apps should be included by default in the resulting
AOSP, there is no way for you to enable or disable most features, as is possible à la
menuconfig. You can’t, for instance, decide that you don’t want power management
support or that you don’t want the Location Service to start by default.

Also, the build system doesn’t generate object files or any sort of intermediate output
within the same location as the source files. You won’t find the .o files alongside
their .c source files within the source tree, for instance. In fact, none of the existing AOSP
directories are used in any of the output. Instead, the build system creates an out/
directory where it stores everything it generates. Hence, a make clean is very much the
same thing as an rm -rf out/. In other words, removing the out/ directory wipes out
anything that was built.

The last thing to say about the build system before we start exploring it in more detail
is that it’s heavily tied to GNU make. And, more to the point, version 3.81; even the
newer 3.82 won’t work with many AOSP versions without patching. The build system

112 | Chapter 4: The Build System

www.it-ebooks.info

http://www.it-ebooks.info/

in fact heavily relies on many GNU make-specific features such as the define, in
clude, and ifndef directives.

Some Background on the Design of Android’s Build System
If you would like to get more insight into the design choices that were made when
Android’s build system was put together, have a look at the build/core/build-
system.html file in the AOSP. It’s dated May 2006 and seems to have been the document
that went around within the Android dev team to get consensus on a rework of the build
system. Some of the information and the hypothesis are out of date or have been obso‐
leted, but most of the nuggets of the current build system are there. In general, I’ve found
that the further back the document was created by the Android dev team, the more
insightful it is regarding raw motivations and technical background. Newer documents
tend to be “cleaned up” and abstract, if they exist at all.

If you want to understand the technical underpinnings of why Android’s build system
doesn’t use recursive make, have a look at the paper entitled “Recursive Make Considered
Harmful” by Peter Miller in AUUGN Journal of AUUG Inc., 19(1), pp. 14−25. The paper
explores the issues surrounding the use of recursive makefiles and explains a different
approach involving the use of a single global makefile for building the entire project
based on module-provided .mk files, which is exactly what Android does.

Architecture
As illustrated in Figure 4-1, the entry point to making sense of the build system is the
main.mk file found in the build/core/ directory, which is invoked through the top-level
makefile, as we saw earlier. The build/core/ directory actually contains the bulk of the
build system, and we’ll cover key files from there. Again, remember that Android’s build
system pulls everything into a single makefile; it isn’t recursive. Hence, each .mk file you
see eventually becomes part of a single huge makefile that contains the rules for building
all the pieces in the system.

Architecture | 113

www.it-ebooks.info

http://aegis.sourceforge.net/auug97.pdf
http://aegis.sourceforge.net/auug97.pdf
http://www.it-ebooks.info/

Figure 4-1. Android’s build system

Why Does make Hang?
Every time you type make, you witness the aggregation of the .mk files into a single set
through what might seem like an annoying build artifact: The build system prints out
the build configuration and seems to hang for quite some time without printing anything
to the screen. After these long moments of screen silence, it actually starts proceeding
again and builds every part of the AOSP, at which point you see regular output to your
screen as you’d expect from any regular build system. Anyone who’s built the AOSP has
wondered what in the world the build system is doing during that time. What it’s doing
is incorporating every Android.mk file it can find in the AOSP.

If you want to see this in action, edit build/core/main.mk and replace this line:

include $(subdir_makefiles)

with this:

$(foreach subdir_makefile, $(subdir_makefiles), \
 $(info Including $(subdir_makefile)) \
 $(eval include $(subdir_makefile)) \
)
subdir_makefile :=

The next time you type make, you’ll actually see what’s happening:

114 | Chapter 4: The Build System

www.it-ebooks.info

http://www.it-ebooks.info/

$ make -j16
==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=generic
...
==
Including ./bionic/Android.mk
Including ./development/samples/Snake/Android.mk
Including ./libcore/Android.mk
Including ./external/elfutils/Android.mk
Including ./packages/apps/Camera/Android.mk
Including ./device/htc/passion-common/Android.mk
...

Configuration
One of the first things the build system does is pull in the build configuration through
the inclusion of config.mk. The build can be configured either by the use of the
envsetup.sh and lunch commands or by providing a buildspec.mk file at the top-level
directory. In either case, some of the following variables need to be set.
TARGET_PRODUCT

Android flavor to be built. Each recipe can, for instance, include a different set of
apps or locales or build different parts of the tree. Have a look at the various single
product .mk files included by the AndroidProducts.mk files in build/target/prod
uct/, device/samsung/crespo/, and device/htc/passion/ for examples in 2.3/Ginger‐
bread. In case of 4.2/Jelly Bean, look at device/asus/grouper/ and device/samsung/
amgnuro/ instead of Crespo and Passion. Values include the following:
generic

The “vanilla” kind, the most basic build of the AOSP parts you can have.

full

The “all dressed” kind, with most apps and the major locales enabled.

full_crespo

Same as full but for Crespo (Samsung Nexus S).

full_grouper

Same as full but for Grouper (Asus Nexus 7).

sim

Android simulator (see “The Simulator: A Piece of Android’s History” on page
117). Even though this is available in 2.3/Gingerbread, this target has since been
removed and isn’t in 4.2/Jelly Bean.

Architecture | 115

www.it-ebooks.info

http://www.it-ebooks.info/

1. If you do not provide a value, defaults will be used. For instance, all apps are set to optional by default. Also,
some modules are part of GRANDFATHERED_USER_MODULES in user_tags.mk. No LOCAL_MODULE_TAGS need
be specified for those; they’re always included.

sdk

The SDK; includes a vast number of locales.

TARGET_BUILD_VARIANT

Selects which modules to install. Each module is supposed to have a LOCAL_MOD
ULE_TAGS variable set in its Android.mk to at least one of the following:1 user, debug,
eng, tests, optional, or samples. By selecting the variant, you will tell the build
system which module subsets should be included—the only exception to this is
packages (i.e., modules that generate .apk files) for which these rules don’t apply.
Specifically:
eng

Includes all modules tagged as user, debug, or eng.

userdebug

Includes both modules tagged as user and debug.

user

Includes only modules tagged as user.

TARGET_BUILD_TYPE

Dictates whether or not special build flags are used or DEBUG variables are defined
in the code. The possible values here are either release or debug. Most notably, the
frameworks/base/Android.mk file chooses between either frameworks/base/core/
config/debug or frameworks/base/core/config/ndebug, depending on whether or not
this variable is set to debug. The former causes the ConfigBuildFlags.DEBUG Java
constant to be set to true, whereas the latter causes it to be set to false. Some code
in parts of the system services, for instance, is conditional on DEBUG. Typically,
TARGET_BUILD_TYPE is set to release.

TARGET_TOOLS_PREFIX

By default, the build system will use one of the cross-development toolchains
shipped with it underneath the prebuilt/ directory — prebuilts/ as of 4.2/Jelly Bean.
However, if you’d like it to use another toolchain, you can set this value to point to
its location.

OUT_DIR

By default, the build system will put all build output into the out/ directory. You
can use this variable to provide an alternate output directory.

116 | Chapter 4: The Build System

www.it-ebooks.info

http://www.it-ebooks.info/

BUILD_ENV_SEQUENCE_NUMBER

If you use the template build/buildspec.mk.default to create your own build
spec.mk file, this value will be properly set. However, if you create a buildspec.mk
with an older AOSP release and try to use it in a future AOSP release that contains
important changes to its build system and, hence, a different value, this variable
will act as a safety net. It will cause the build system to inform you that your build
spec.mk file doesn’t match your build system.

The Simulator: A Piece of Android’s History
If you go back to the menu printed by 2.3/Gingerbread’s lunch in “Building Android”
on page 94, you’ll notice an entry called simulator. In fact you’ll find references to the
simulator at a number of locations in 2.3/Gingerbread, including quite a few Android.mk
files and subdirectories in the tree. The most important thing you need to know about
the simulator is that it has nothing to do with the emulator. They are two completely
different things.

That said, the simulator appears to be a remnant of the Android team’s early work to
create Android. Since at the time they didn’t even have Android running in QEMU, they
used their desktop OSes and the LD_PRELOAD mechanism to simulate an Android device,
hence the term “simulator.” It appears that they stopped using it as soon as running
Android on QEMU became possible. It continued being in the AOSP up until 4.0/Ice-
Cream Sandwich, though, and was potentially useful for building parts of the AOSP for
development and testing on developer workstations. 4.2/Jelly Bean, for instance, doesn’t
have a simulator target.

The presence of the simulator build target in 2.3/Gingerbread and before didn’t mean
that you could run the AOSP on your desktop. In fact you couldn’t, if only because you
needed a kernel that had Binder included and you would’ve needed to be using Bionic
instead of your system’s default C library. But, if you wanted to run parts of what’s built
from the AOSP on your desktop, this product target allowed you to do so.

In 2.3/Gingerbread, various parts of the code build very differently if the target is the
simulator. When browsing the code, for example, you’ll sometimes find conditional
builds around the HAVE_ANDROID_OS C macro, which is only defined when compiling
for the simulator. The code that talks to the Binder is one of these. If HAVE_AN
DROID_OS is not defined, that code will return an error to its caller instead of trying to
actually talk to the Binder driver.

For the full story behind the simulator, have a look at Android developer Andrew
McFadden’s response to a post entitled “Android Simulator Environment” on the
android-porting mailing list in April 2009.

Architecture | 117

www.it-ebooks.info

http://groups.google.com/group/android-porting/msg/9f27c8d072c1b112
http://www.it-ebooks.info/

In addition to selecting which parts of the AOSP to build and which options to build
them with, the build system also needs to know about the target it’s building for. This
is provided through a BoardConfig.mk file, which will specify things such as the com‐
mand line to be provided to the kernel, the base address at which the kernel should be
loaded, or the instruction set version most appropriate for the board’s CPU (TAR
GET_ARCH_VARIANT). Have a look at build/target/board/ for a set of per-target directories
that each contain a BoardConfig.mk file. Also have a look at the various device/*/TAR
GET_DEVICE/BoardConfig.mk files included in the AOSP. The latter are much richer than
the former because they contain a lot more hardware-specific information. The device
name (i.e., TARGET_DEVICE) is derived from the PRODUCT_DEVICE specified in the prod‐
uct .mk file provided for the TARGET_PRODUCT set in the configuration. In 2.3/Ginger‐
bread, for example, device/samsung/crespo/AndroidProducts.mk includes device/
samsung/crespo/full_crespo.mk, which sets PRODUCT_DEVICE to crespo. Hence, the build
system looks for a BoardConfig.mk in device/*/crespo/, and there happens to be one at
that location. The same goes on in 4.2/Jelly Bean for the PRODUCT_DEVICE set in device/
asus/grouper/full_grouper.mk to grouper, thereby pointing the build system to
device/*/grouper/BoardConfig.mk.

The final piece of the puzzle with regard to configuration is the CPU-specific options
used to build Android. For ARM, those are contained in build/core/combo/arch/arm/
armv*.mk, with TARGET_ARCH_VARIANT determining the actual file to use. Each file lists
CPU-specific cross-compiler and cross-linker flags used for building C/C++ files. They
also contain a number of ARCH_ARM_HAVE_* variables that enable others parts of the
AOSP to build code conditionally based on whether a given ARM feature is found in
the target’s CPU.

envsetup.sh
Now that you understand the kinds of configuration input the build system needs, we
can discuss the role of envsetup.sh in more detail. As its name implies, envsetup.sh
actually is for setting up a build environment for Android. It does only part of the job,
though. Mainly, it defines a series of shell commands that are useful to any sort of AOSP
work:

$ cd ~/android/aosp-2.3.x
$. build/envsetup.sh
$ help
Invoke ". build/envsetup.sh" from your shell to add the following functions to
your environment:
- croot: Changes directory to the top of the tree.
- m: Makes from the top of the tree.
- mm: Builds all of the modules in the current directory.
- mmm: Builds all of the modules in the supplied directories.
- cgrep: Greps on all local C/C++ files.
- jgrep: Greps on all local Java files.

118 | Chapter 4: The Build System

www.it-ebooks.info

http://www.it-ebooks.info/

- resgrep: Greps on all local res/*.xml files.
- godir: Go to the directory containing a file.

Look at the source to view more functions. The complete list is:
add_lunch_combo cgrep check_product check_variant choosecombo chooseproduct choo
setype choosevariant cproj croot findmakefile gdbclient get_abs_build_var getbug
reports get_build_var getprebuilt gettop godir help isviewserverstarted jgrep lu
nch m mm mmm pgrep pid printconfig print_lunch_menu resgrep runhat runtest set_j
ava_home setpaths set_sequence_number set_stuff_for_environment settitle smokete
st startviewserver stopviewserver systemstack tapas tracedmdump

In 4.2/Jelly Bean, hmm has replaced help, and the command set made available to you
has been expanded:

$ cd ~/android/aosp-4.2
$. build/envsetup.sh
$ hmm
Invoke ". build/envsetup.sh" from your shell to add the following functions to y
our environment:
- lunch: lunch <product_name>-<build_variant>
- tapas: tapas [<App1> <App2> ...] [arm|x86|mips] [eng|userdebug|user]
- croot: Changes directory to the top of the tree.
- m: Makes from the top of the tree.
- mm: Builds all of the modules in the current directory.
- mmm: Builds all of the modules in the supplied directories.
- cgrep: Greps on all local C/C++ files.
- jgrep: Greps on all local Java files.
- resgrep: Greps on all local res/*.xml files.
- godir: Go to the directory containing a file.

Look at the source to view more functions. The complete list is:
addcompletions add_lunch_combo cgrep check_product check_variant choosecombo cho
oseproduct choosetype choosevariant cproj croot findmakefile gdbclient get_abs_b
uild_var getbugreports get_build_var getlastscreenshot getprebuilt getscreenshot
path getsdcardpath gettargetarch gettop godir hmm isviewserverstarted jgrep key_
back key_home key_menu lunch _lunch m mm mmm pid printconfig print_lunch_menu re
sgrep runhat runtest set_java_home setpaths set_sequence_number set_stuff_for_en
vironment settitle smoketest startviewserver stopviewserver systemstack tapas tr
acedmdump

You’ll likely find the croot and godir commands quite useful for traversing the tree. Some
parts of it are quite deep, given the use of Java and its requirement that packages be
stored in directory trees bearing the same hierarchy as each subpart of the correspond‐
ing fully qualified package name. For instance, a file part of the com.foo.bar package
must be stored under the com/foo/bar/ directory. Hence, it’s not rare to find yourself 7
to 10 directories underneath the AOSP’s top-level directory, and it rapidly becomes
tedious to type something like cd ../../../ ... to return to an upper part of the tree.

m and mm are also quite useful since they allow you to, respectively, build from the top
level regardless of where you are or just build the modules found in the current directory.
For example, if you made a modification to the Launcher and are in packages/apps/

Architecture | 119

www.it-ebooks.info

http://www.it-ebooks.info/

Launcher2, you can rebuild just that module by typing mm instead of cd’ing back to the
top level and typing make. Note that mm doesn’t rebuild the entire tree and, therefore,
won’t regenerate AOSP images even if a dependent module has changed. m will do that,
though. Still, mm can be useful to test whether your local changes break the build or
not until you’re ready to regenerate the full AOSP.

Although the online help doesn’t mention lunch, it is one of the commands defined by
envsetup.sh. When you run lunch without any parameters, it shows you a list of potential
choices. This is the list from 2.3/Gingerbread:

$ lunch

You're building on Linux

Lunch menu... pick a combo:
 1. generic-eng
 2. simulator
 3. full_passion-userdebug
 4. full_crespo4g-userdebug
 5. full_crespo-userdebug

Which would you like? [generic-eng]

This is the list from 4.2/Jelly Bean:
$ lunch

You're building on Linux

Lunch menu... pick a combo:
 1. full-eng
 2. full_x86-eng
 3. vbox_x86-eng
 4. full_mips-eng
 5. full_grouper-userdebug
 6. full_tilapia-userdebug
 7. mini_armv7a_neon-userdebug
 8. mini_armv7a-userdebug
 9. mini_mips-userdebug
 10. mini_x86-userdebug
 11. full_mako-userdebug
 12. full_maguro-userdebug
 13. full_manta-userdebug
 14. full_toroplus-userdebug
 15. full_toro-userdebug
 16. full_panda-userdebug

Which would you like? [full-eng]

These choices are not static. Most depend on what’s in the AOSP at the time envsetup.sh
runs. They’re in fact individually added using the add_lunch_combo() function that the

120 | Chapter 4: The Build System

www.it-ebooks.info

http://www.it-ebooks.info/

script defines. In 2.3/Gingerbread, for instance, envsetup.sh adds generic-eng and
simulator by default:

add the default one here
add_lunch_combo generic-eng

if we're on linux, add the simulator. There is a special case
in lunch to deal with the simulator
if ["$(uname)" = "Linux"] ; then
 add_lunch_combo simulator
fi

In 4.2/Jelly Bean, simulator is no longer a valid target and envsetup.sh does this instead:

add the default one here
add_lunch_combo full-eng
add_lunch_combo full_x86-eng
add_lunch_combo vbox_x86-eng
add_lunch_combo full_mips-eng

envsetup.sh also includes all the vendor-supplied scripts it can find. Here’s how it’s done
in 2.3/Gingerbread:

Execute the contents of any vendorsetup.sh files we can find.
for f in `/bin/ls vendor/*/vendorsetup.sh vendor/*/build/vendorsetup.sh device/*
/*/vendorsetup.sh 2> /dev/null`
do
 echo "including $f"
 . $f
done
unset f

Here’s how it’s done in 4.2/Jelly Bean:
Execute the contents of any vendorsetup.sh files we can find.
for f in `/bin/ls vendor/*/vendorsetup.sh vendor/*/*/vendorsetup.sh device/*/*/v
endorsetup.sh 2> /dev/null`
do
 echo "including $f"
 . $f
done
unset f

In 2.3/Gingerbread the device/samsung/crespo/vendorsetup.sh file, for instance, does
this:

add_lunch_combo full_crespo-userdebug

Similarly, in 4.2/Jelly Bean the device/asus/grouper/vendorsetup.sh file does this:

add_lunch_combo full_grouper-userdebug

So that’s how you end up with the menu we saw earlier. Note that the menu asks you to
choose a combo. Essentially, this is a combination of a TARGET_PRODUCT and TAR

Architecture | 121

www.it-ebooks.info

http://www.it-ebooks.info/

GET_BUILD_VARIANT, with the exception of the simulator in 2.3/Gingerbread. The
menu provides the default combinations, but the others remain valid and can be passed
to lunch as parameters on the command line. In 2.3/Gingerbread, for instance, you can
do something like this:

$ lunch generic-user

==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=generic
TARGET_BUILD_VARIANT=user
TARGET_SIMULATOR=false
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=arm
HOST_ARCH=x86
HOST_OS=linux
HOST_BUILD_TYPE=release
BUILD_ID=GINGERBREAD
==

$ lunch full_crespo-eng

==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=full_crespo
TARGET_BUILD_VARIANT=eng
TARGET_SIMULATOR=false
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=arm
HOST_ARCH=x86
HOST_OS=linux
HOST_BUILD_TYPE=release
BUILD_ID=GINGERBREAD
==

Once lunch has finished running for a generic-eng combo, it will set up environment
variables described in Table 4-1 in your current shell to provide the build system with
the required configuration information.

Table 4-1. Environment variables set by lunch (in no particular order) for the default
build target (i.e., generic-eng) in 2.3/Gingerbread

Variable Value

PATH $ANDROID_JAVA_TOOLCHAIN:$PATH:$ANDROID_BUILD_PATHS

ANDROID_EABI_TOOLCHAIN aosp-root/prebuilt/linux-x86/toolchain/arm-

eabi-4.4.3/bin

122 | Chapter 4: The Build System

www.it-ebooks.info

http://www.it-ebooks.info/

Variable Value

ANDROID_TOOLCHAIN $ANDROID_EABI_TOOLCHAIN

ANDROID_QTOOLS aosp-root/development/emulator/qtools

ANDROID_BUILD_PATHS aosp-root/out/host/linux-x86:$ANDROID_TOOLCHAIN:$AN

DROID_QTOOLS:$ANDROID_TOOLCHAIN:$ANDROID_EABI_TOOLCHAIN

ANDROID_BUILD_TOP aosp-root

ANDROID_JAVA_TOOLCHAIN $JAVA_HOME/bin

ANDROID_PRODUCT_OUT aosp-root/out/target/product/generic

OUT ANDROID_PRODUCT_OUT

BUILD_ENV_SEQUENCE_NUMBER 10

OPROFILE_EVENTS_DIR aosp-root/prebuilt/linux-x86/oprofile

TARGET_BUILD_TYPE release

TARGET_PRODUCT generic

TARGET_BUILD_VARIANT eng

TARGET_BUILD_APPS empty

TARGET_SIMULATOR false

PROMPT_COMMAND \"\033]0;[${TARGET_PRODUCT}-${TARGET_BUILD_VARIANT}] $

{USER}@${HOSTNAME}: ${PWD}\007\"

JAVA_HOME /usr/lib/jvm/java-6-sun

Using ccache
If you’ve already done any AOSP building while reading these pages, you’ve noticed how
long the process is. Obviously, unless you can construct yourself a bleeding-edge build
farm, any sort of speedup on your current hardware would be greatly appreciated. As a
sign that the Android development team might itself also feel the pain of the rather long
builds, they’ve added support for ccache. ccache stands for Compiler Cache and is part
of the Samba Project. It’s a mechanism that caches the object files generated by the
compiler based on the preprocessor’s output. Hence, if under two separate builds the
preprocessor’s output is identical, use of ccache will result in the second build not ac‐
tually using the compiler to build the file. Instead, the cached object file will be copied
to the destination where the compiler’s output would have been.

To enable the use of ccache, all you need to do is make sure that the USE_CCACHE
environment variable is set to 1 before you start your build:

$ export USE_CCACHE=1

You won’t gain any acceleration the first time you run, since the cache will be empty at
that time. Every other time you build from scratch, though, the cache will help accelerate
the build process. The only downside is that ccache is for C/C++ files only. Hence, it
can’t accelerate the build of any Java file, I must add sadly. In 2.3/Gingerbread, there are

Architecture | 123

www.it-ebooks.info

http://ccache.samba.org/
http://ccache.samba.org/
http://www.it-ebooks.info/

about 15,000 C/C++ files and 18,000 Java files in the AOSP. Those numbers are 27,000
and 29,000 in 4.2/Jelly Bean. So, while the cache isn’t a panacea, it’s better than nothing.

If you’d like to learn more about ccache, have a look at the article titled “Improve col‐
laborative build times with ccache” by Martin Brown on IBM’s developerWorks site.
The article also explores the use of distcc, which allows you to distribute builds over
several machines, so you can pool your team’s workstation caches together.

For all its benefits, some developers have reported weird errors in some cases when
using ccache. For instance, I ran into such issues while maintaining my own AOSP fork.
First, I got a version of the AOSP on my workstation and built it, creating a warm cache.
I then proceeded to upload that tree to http://github.com. Finally, I did a repo sync on
the tree I had just uploaded but from another directory on my workstation than the
original one uploaded. Using diff to compare both trees showed both trees were identical.
Yet, the original built fine with the warm cache while the second continued to fail build‐
ing until the cache was erased.

Of course, if you get tired of always typing build/envsetup.sh and lunch, all you need to
do is copy the build/buildspec.mk.default into the top-level directory, rename it to build
spec.mk, and edit it to match the configuration that would have otherwise been set by
running those commands. The file already contains all the variables you need to provide;
it’s just a matter of uncommenting the corresponding lines and setting the values ap‐
propriately. Once you’ve done that, all you have to do is go to the AOSP’s directory and
invoke make directly. You can skip envsetup.sh and lunch.

Function Definitions
Because the build system is fairly large—there are more than 40 .mk files in build/
core/ alone—there are benefits in being able to reuse as much code as possible. This is
why the build system defines a large number of functions in the definitions.mk file. That
file is actually the largest one in the build system at about 60KB, with about 140 functions
on about 1,800 lines of makefile code in 2.3/Gingerbread. It’s still the largest file in the
build system in 4.2/Jelly Bean at about 73KB, 170 functions, and about 2,100 lines of
makefile code. Functions offer a variety of operations, including file lookup (e.g., all-
makefiles-under and all-c-files-under), transformation (e.g., transform-c-to-o
and transform-java-to-classes.jar), copying (e.g., copy-file-to-target), and
utility (e.g., my-dir.)

Not only are these functions used throughout the rest of the build system’s components,
acting as its core library, but they’re sometimes also directly used in modules’
Android.mk files. Here’s an example snippet from the Calculator app’s Android.mk:

LOCAL_SRC_FILES := $(call all-java-files-under, src)

124 | Chapter 4: The Build System

www.it-ebooks.info

http://www.ibm.com/developerworks/linux/library/l-ccache/index.html
http://www.ibm.com/developerworks/linux/library/l-ccache/index.html
http://github.com
http://www.it-ebooks.info/

Although thoroughly describing definitions.mk is outside the scope of this book, it
should be fairly easy for you to explore it on your own. If nothing else, most of the
functions in it are preceded with a comment explaining what they do. Here’s an example
from 2.3/Gingerbread:

###
Find all of the java files under the named directories.
Meant to be used like:
SRC_FILES := $(call all-java-files-under,src tests)
###

define all-java-files-under
$(patsubst ./%,%, \
 $(shell cd $(LOCAL_PATH) ; \
 find $(1) -name "*.java" -and -not -name ".*") \
)
endef

Main Make Recipes
At this point you might be wondering where any of the goodies are actually generated.
How are the various images such as RAM disk generated or how is the SDK put together,
for example? Well, I hope you won’t hold a grudge, but I’ve been keeping the best for
last. So without further ado, have a look at the Makefile in build/core/ (not the top-level
one). The file starts with an innocuous-looking comment:

Put some miscellaneous rules here

But don’t be fooled. This is where some of the best meat is. Here’s the snippet that takes
care of generating the RAM disk, for example, in 2.3/Gingerbread:

the ramdisk
INTERNAL_RAMDISK_FILES := $(filter $(TARGET_ROOT_OUT)/%, \
$(ALL_PREBUILT) \
$(ALL_COPIED_HEADERS) \
$(ALL_GENERATED_SOURCES) \
$(ALL_DEFAULT_INSTALLED_MODULES))

BUILT_RAMDISK_TARGET := $(PRODUCT_OUT)/ramdisk.img

We just build this directly to the install location.
INSTALLED_RAMDISK_TARGET := $(BUILT_RAMDISK_TARGET)
$(INSTALLED_RAMDISK_TARGET): $(MKBOOTFS) $(INTERNAL_RAMDISK_FILES) | $(MINIGZIP)
$(call pretty,"Target ram disk: $@")
$(hide) $(MKBOOTFS) $(TARGET_ROOT_OUT) | $(MINIGZIP) > $@

And here’s the snippet that creates the certs packages for checking over-the-air (OTA)
updates in the same AOSP version:

Architecture | 125

www.it-ebooks.info

http://www.it-ebooks.info/

Build a keystore with the authorized keys in it, used to verify the
authenticity of downloaded OTA packages.
#
This rule adds to ALL_DEFAULT_INSTALLED_MODULES, so it needs to come
before the rules that use that variable to build the image.
ALL_DEFAULT_INSTALLED_MODULES += $(TARGET_OUT_ETC)/security/otacerts.zip
$(TARGET_OUT_ETC)/security/otacerts.zip: KEY_CERT_PAIR :=
$(DEFAULT_KEY_CERT_PAIR)
$(TARGET_OUT_ETC)/security/otacerts.zip: $(addsuffix .x509.pem,
$(DEFAULT_KEY_CERT_PAIR))
$(hide) rm -f $@
$(hide) mkdir -p $(dir $@)
$(hide) zip -qj $@ $<

.PHONY: otacerts
otacerts: $(TARGET_OUT_ETC)/security/otacerts.zip

Obviously there’s a lot more than I can fit here, but have a look at Makefile for infor‐
mation on how any of the following are created:

• Properties (including the target’s /default.prop and /system/build.prop).
• RAM disk.
• Boot image (combining the RAM disk and a kernel image).
• NOTICE files: These are files required by the AOSP’s use of the Apache Software

License (ASL). Have a look at the ASL for more information about NOTICE files.
• OTA keystore.
• Recovery image.
• System image (the target’s /system directory).
• Data partition image (the target’s /data directory).
• OTA update package.
• SDK.

Nevertheless, some things aren’t in this file:
Kernel images

Don’t look for any rule to build these. There is no kernel part of the official AOSP
releases—some of the third-party projects listed in Appendix E, however, actually
do package kernel sources directly into the AOSPs they distribute. Instead, you need
to find an Androidized kernel for your target, build it separately from the AOSP,
and feed it to the AOSP. You can find a few examples of this in the devices in the
device/ directory. In 2.3/Gingerbread, for example, device/samsung/crespo/ includes
a kernel image (file called kernel) and a loadable module for the Crespo’s WiFi

126 | Chapter 4: The Build System

www.it-ebooks.info

http://www.it-ebooks.info/

(bcm4329.ko file). Both of these are built outside the AOSP and copied in binary
form into the tree for inclusion with the rest of the build.

NDK
While the code to build the NDK is in the AOSP, it’s entirely separate from the
AOSP’s build system in build/. Instead, the NDK’s build system is in ndk/build/.
We’ll discuss how to build the NDK shortly.

CTS
The rules for building the CTS are in build/core/tasks/cts.mk.

Cleaning
As I mentioned earlier, a make clean is very much the equivalent of wiping out the out/
directory. The clean target itself is defined in main.mk. There are, however, other
cleanup targets. Most notably, installclean, which is defined in cleanbuild.mk, is au‐
tomatically invoked whenever you change TARGET_PRODUCT, TARGET_BUILD_VARIANT or
PRODUCT_LOCALES. For instance, if I had first built 2.3/Gingerbread for the generic-
eng combo and then used lunch to switch the combo to full-eng, the next time I started
make, some of the build output would be automatically pruned using installclean:

$ make -j16
==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=full
TARGET_BUILD_VARIANT=eng
...
==
*** Build configuration changed: "generic-eng-{mdpi,nodpi}" -> "full-eng-{en_US,
en_GB,fr_FR,it_IT,de_DE,es_ES,mdpi,nodpi}"
*** Forcing "make installclean"...
*** rm -rf out/target/product/generic/data/* out/target/product/generic/data-qem
u/* out/target/product/generic/userdata-qemu.img out/host/linux-x86/obj/NOTICE_F
ILES out/host/linux-x86/sdk out/target/product/generic/*.img out/target/product/
generic/*.txt out/target/product/generic/*.xlb out/target/product/generic/*.zip
out/target/product/generic/data out/target/product/generic/obj/APPS out/target/p
roduct/generic/obj/NOTICE_FILES out/target/product/generic/obj/PACKAGING out/tar
get/product/generic/recovery out/target/product/generic/root out/target/product/
generic/system out/target/product/generic/dex_bootjars out/target/product/generi
c/obj/JAVA_LIBRARIES
*** Done with the cleaning, now starting the real build.

In contrast to clean, installclean doesn’t wipe out the entirety of out/. Instead, it only
nukes the parts that need rebuilding given the combo configuration change. There’s also
a clobber target which is essentially the same thing as a clean.

Architecture | 127

www.it-ebooks.info

http://www.it-ebooks.info/

Module Build Templates
What I just described is the build system’s architecture and the mechanics of its core
components. Having read that, you should have a much better idea of how Android is
built from a top-down perspective. Very little of that, however, permeates down to the
level of AOSP modules’ Android.mk files. The system has in fact been architected so
that module build recipes are pretty much independent from the build system’s internals.
Instead, build templates are provided so that module authors can get their modules built
appropriately. Each template is tailored for a specific type of module, and module
authors can use a set of documented variables, all prefixed by LOCAL_, to modulate the
templates’ behavior and output. Of course, the templates and underlying support files
(mainly base_rules.mk) closely interact with the rest of the build system to deal properly
with each module’s build output. But that’s invisible to the module’s author.

The templates are themselves found in the same location as the rest of the build system
in build/core/. Android.mk gets access to them through the include directive. Here’s an
example:

include $(BUILD_PACKAGE)

As you can see, Android.mk files don’t actually include the .mk templates by name.
Instead, they include a variable that is set to the corresponding .mk file. Table 4-2
provides the full list of available module templates.

Table 4-2. Module build templates list
Variable Template What It Builds Most Notable Use

BUILD_EXECUTABLE executable.mk Target binaries Native commands and
daemons

BUILD_HOST_EXECUTABLE host_executable.mk Host binaries Development tools

BUILD_RAW_EXECUTABLE raw_executable.mk Target binaries that run
on bare metal

Code in the bootloader/
directory

BUILD_JAVA_LIBRARY java_library.mk Target Java libaries Apache Harmony and
Android Framework

BUILD_STATIC_JAVA_LIBRARY static_java_library.mk Target static Java
libraries

N/A, few modules use this

BUILD_HOST_JAVA_LIBRARY host_java_library.mk Host Java libraries Development tools

BUILD_SHARED_LIBRARY shared_library.mk Target shared libraries A vast number of modules,
including many in exter
nal/ and frameworks/
base/

BUILD_STATIC_LIBRARY static_library.mk Target static libraries A vast number of modules,
including many in exter
nal/

128 | Chapter 4: The Build System

www.it-ebooks.info

http://www.it-ebooks.info/

Variable Template What It Builds Most Notable Use

BUILD_HOST_SHARED_LIBRARY host_shared_li
brary.mk

Host shared libraries Development tools

BUILD_HOST_STATIC_LIBRARY host_static_library.mk Host static libraries Development tools

BUILD_RAW_STATIC_LIBRARY raw_static_library.mk Target static libraries
that run on bare metal

Code in bootloader/

BUILD_PREBUILT prebuilt.mk Copies prebuilt target
files

Configuration files and
binaries

BUILD_HOST_PREBUILT host_prebuilt.mk Copies prebuilt host
files

Tools in prebuilt/ and
configuration files

BUILD_MULTI_PREBUILT multi_prebuilt.mk Copies prebuilt modules
of multiple but known
types, like Java libraries
or executables

Rarely used

BUILD_PACKAGE package.mk Built-in AOSP apps (i.e.,
anything that ends up
being an .apk)

All apps in the AOSP

BUILD_KEY_CHAR_MAP key_char_map.mk Device character maps All device character maps
in AOSP

These build templates allow Android.mk files to be usually fairly lightweight:

LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)

LOCAL_VARIABLE_1 := value_1

LOCAL_VARIABLE_2 := value_2

...

include $(BUILD_MODULE_TYPE)

Tells the build template where the current module is located.
Clears all previously set LOCAL_* variables that might have been set for other
modules.
Sets various LOCAL_* variables to module-specific values.
Invokes the build template that corresponds to the current module’s type.

Architecture | 129

www.it-ebooks.info

http://www.it-ebooks.info/

2. This file contains a set list of variables starting with the string LOCAL_. If a variable isn’t specifically listed in
this file, it won’t be taken into account by CLEAR_VARS.

3. This version is cleaned up a little (removed commented code, for instance) and slightly reformatted.

4. Also slightly modified to remove white space and comments.

Note that CLEAR_VARS, which is provided by clear_vars.mk,2 is very
important. Recall that the build system includes all Android.mk into
what amounts to a single huge makefile. Including CLEAR_VARS en‐
sures that the LOCAL_* values set for modules preceding yours are
zeroed out by the time your Android.mk is included. Also, a single
Android.mk can describe multiple modules one after the other. Hence,
CLEAR_VARS ensures that previous module recipes don’t pollute sub‐
sequent ones.

Here’s the Service Manager’s Android.mk in 2.3/Gingerbread, for instance (frameworks/
base/cmds/servicemanager/):3

LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)

LOCAL_SHARED_LIBRARIES := liblog
LOCAL_SRC_FILES := service_manager.c binder.c
LOCAL_MODULE := servicemanager
ifeq ($(BOARD_USE_LVMX),true)
 LOCAL_CFLAGS += -DLVMX
endif

include $(BUILD_EXECUTABLE)

And here’s the one4 from 2.3/Gingerbread’s Desk Clock app (packages/app/DeskClock/):

LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)

LOCAL_MODULE_TAGS := optional
LOCAL_SRC_FILES := $(call all-java-files-under, src)
LOCAL_PACKAGE_NAME := DeskClock
LOCAL_OVERRIDES_PACKAGES := AlarmClock
LOCAL_SDK_VERSION := current

include $(BUILD_PACKAGE)

include $(call all-makefiles-under,$(LOCAL_PATH))

As you can see, essentially the same structure is used in both modules, even though they
provide very different input and result in very different output. Notice also the last line
from the Desk Clock’s Android.mk, which basically includes all subdirectories’

130 | Chapter 4: The Build System

www.it-ebooks.info

http://www.it-ebooks.info/

Android.mk files. As I said earlier, the build system looks for the first makefile in a
hierarchy and doesn’t look in any subdirectories underneath the directory where one
was found, hence the need to manually invoke those. Obviously, the code here just goes
out and looks for all makefiles underneath. However, some parts of the AOSP either
explicitly list subdirectories or conditionally select them based on configuration.

The documentation at http://source.android.com used to provide an exhaustive list of
all the LOCAL_* variables with their meaning and use. Unfortunately, at the time of this
writing, this list is no longer available. The build/core/build-system.html file, however,
contains an earlier version of that list, and you should refer to that one until up-to-date
lists become available again. Here are some of the most frequently encountered LO
CAL_* variables:
LOCAL_PATH

The path of the current module’s sources, typically provided by invoking $(call
my-dir).

LOCAL_MODULE

The name to attribute to this module’s build output. The actual filename or output
and its location will depend on the build template you include. If this is set to foo,
for example, and you build an executable, then the final executable will be a com‐
mand called foo and it will be put in the target’s /system/bin/. If LOCAL_MODULE is set
to libfoo and you include BUILD_SHARED_LIBRARY instead of BUILD_EXECUTABLE,
the build system will generate libfoo.so and put it in /system/lib/.

Note that the name you provide here must be unique for the particular module class
(i.e., build template type) you are building. There can’t be two libfoo.so libraries, for
instance. It’s expected that the module name will have to be globally unique (i.e.,
across all module classes) at some point in the future.

LOCAL_SRC_FILES

The source files used to build the module. You may provide those by using one of
the build system’s defined functions, as the Desk Clock uses all-java-files-
under, or you may list the files explicitly, as the Service Manager does.

LOCAL_PACKAGE_NAME

Unlike all other modules, apps use this variable instead of LOCAL_MODULE to provide
their names, as you can witness by comparing the two Android.mk files shown
earlier.

LOCAL_SHARED_LIBRARIES

Use this to list all the libraries your module depends on. As mentioned earlier, the
Service Manager’s dependency on liblog is specified using this variable.

Architecture | 131

www.it-ebooks.info

http://source.android.com
http://www.it-ebooks.info/

LOCAL_MODULE_TAGS

As I mentioned earlier, this allows you to control under which TARGET_BUILD_VAR
IANT this module is built. Usually, this should just be set to optional.

LOCAL_MODULE_PATH

Use this to override the default install location for the type of module you’re
building.

A good way to find out about more LOCAL_* variables is to look at existing An
droid.mk files in the AOSP. Also, clear_vars.mk contains the full list of variables that are
cleared. So while it doesn’t give you the meaning of each, it certainly lists them all.

Also, in addition to the cleaning targets that affect the AOSP globally, each module can
define its own cleaning rules by providing a CleanSpec.mk, much like modules provide
Android.mk files. Unlike the latter, though, the former aren’t required. By default, the
build system has cleaning rules for each type of module. But you can specify your own
rules in a CleanSpec.mk in case your module’s build does something the build system
doesn’t generate by default and, therefore, wouldn’t typically know how to clean up.

Output
Now that we’ve looked at how the build system works and how module build templates
are used by modules, let’s look at the output it creates in out/. At a fairly high level, the
build output operates in three stages and in two modes, one for the host and one for the
target:

1. Intermediates are generated using the module sources. These intermediates’ format
and location depend on the module’s sources. They may be .o files for C/C++ code,
for example, or .jar files for Java-based code.

2. Intermediates are used by the build system to create actual binaries and packages:
taking .o files, for example, and linking them into an actual binary.

3. The binaries and packages are assembled together into the final output requested
of the build system. Binaries, for instance, are copied into directories containing
the root and /system filesystems, and images of those filesystems are generated for
use on the actual device.

out/ is mainly separated into two directories, reflecting its operating modes: host/ and
target/. In each directory, you will find a couple of obj/ directories that contain the
various intermediates generated during the build. Most of these are stored in subdir‐
ectories named like the one that the BUILD_* macros presented earlier and serve a spe‐
cific complementary purpose during the build system’s operation:

132 | Chapter 4: The Build System

www.it-ebooks.info

http://www.it-ebooks.info/

• EXECUTABLES/
• JAVA_LIBRARIES/
• SHARED_LIBRARIES/
• STATIC_LIBRARIES/
• APPS/
• DATA/
• ETC/
• KEYCHARS/
• PACKAGING/
• NOTICE_FILES/
• include/
• lib/

The directory you’ll likely be most interested in is out/target/product/PRODUCT_DE
VICE/. That’s where the output images will be located for the PRODUCT_DEVICE defined
in the corresponding product configuration’s .mk. Table 4-3 explains the content of that
directory.

Table 4-3. Product output
Entry Description

android-info.txt Contains the code name for the board for which this product is configured

clean_steps.mk Contains a list of steps that must be executed to clean the tree, as provided in CleanS
pec.mk files by calling the add-clean-step function

data/ The target’s /data directory

installed-files.txt A list of all the files installed in data/ and system/ directories

obj/ The target product’s intermediaries

previous_build_con
fig.mk

The last build target; will be used on the next make to check if the config has changed,
thereby forcing an installclean

ramdisk.img The RAM disk image generated based on the content of the root/ directory

root/ The content of the target’s root filesystem

symbols/ Unstripped versions of the binaries put in the root filesystem and /system directory

system/ The target’s /system directory

system.img The /system image, based on the content of the system/ directory

userdata.img The /data image, based on the content of the data/ directory

Architecture | 133

www.it-ebooks.info

http://www.it-ebooks.info/

5. This assumes you had already run envsetup.sh and lunch.

Have a look back at Chapter 2 for a refresher on the root filesystem, /system, and /
data. Essentially, though, when the kernel boots, it will mount the RAM disk image and
execute the /init found inside. That binary, in turn, will run the /init.rc script that will
mount both the /system and /data images at their respective locations. We’ll come back
to the root filesystem layout and the system’s operation at boot time in Chapter 6.

Build Recipes
With the build system’s architecture and functioning in mind, let’s take a look at some
of the most common, and some slightly uncommon, build recipes. We’ll only lightly
touch on using the results of each recipe, but you should have enough information to
get started.

The Default droid Build
Earlier, we went through a number of plain make commands but never really explained
the default target. When you run plain make, it’s as if you had typed:5

$ make droid

droid is in fact the default target as defined in main.mk. You don’t usually need to specify
this target manually. I’m providing it here for completeness, so you know it exists.

Seeing the Build Commands
When you build the AOSP, you’ll notice that it doesn’t actually show you the commands
it’s running. Instead, it prints out only a summary of each step it’s at. If you want to see
everything it does, like the gcc command lines for example, add the showcommands target
to the command line:

$ make showcommands
...
host Java: apicheck (out/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/c
lasses)
for f in ; do if [! -f $f]; then echo Missing file $f; exit 1; fi; unzip -qo $
f -d out/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/classes; (cd ou
t/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/classes && rm -rf META-I
NF); done
javac -J-Xmx512M -target 1.5 -Xmaxerrs 9999999 -encoding ascii -g -extdirs ""
 -d out/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/classes \@out/host
/common/obj/JAVA_LIBRARIES/apicheck_intermediates/java-source-list-uniq || (rm
-rf out/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/classes ; exit 41
)
rm -f out/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/java-source-list
rm -f out/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/java-source-list

134 | Chapter 4: The Build System

www.it-ebooks.info

http://www.it-ebooks.info/

-uniq
jar -cfm out/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/javalib.jar b
uild/tools/apicheck/src/MANIFEST.mf -C out/host/common/obj/JAVA_LIBRARIES/apich
eck_intermediates/classes .
Header: out/host/linux-x86/obj/include/libexpat/expat.h
cp -f external/expat/lib/expat.h out/host/linux-x86/obj/include/libexpat/expat.h
Header: out/host/linux-x86/obj/include/libexpat/expat_external.h
cp -f external/expat/lib/expat_external.h out/host/linux-x86/obj/include/libexpa
t/expat_external.h
Header: out/target/product/generic/obj/include/libexpat/expat.h
cp -f external/expat/lib/expat.h out/target/product/generic/obj/include/libexpat
/expat.h
...

Illustrating what I explained in the previous section, this is the same as:
$ make droid showcommands

As you’ll rapidly notice when using this, it generates a lot of output and is therefore hard
to follow. You may, however, want to save the standard output and standard error into
files if you’d like to analyze the actual commands used to build the AOSP:

$ make showcommands > aosp-build-stdout 2> aosp-build-stderr

You can also do something like this to merge all output into a single file:
$ make showcommands 2>&1 | tell build.log

Some also report that they prefer using the nohup command instead:
$ nohup make showcommands

Building the SDK for Linux and Mac OS
The official Android SDK is available at http://developer.android.com. You can, however,
build your own SDK using the AOSP if, for instance, you extended the core APIs to
expose new functionality and would like to distribute the result to developers so they
can benefit from your new APIs. To do so, you’ll need to select a special combo:

$. build/envsetup.sh
$ lunch sdk-eng
$ make sdk

Once this is done, the SDK will be in out/host/linux-x86/sdk/ when built on Linux and
in out/host/darwin-x86/sdk/ when built on a Mac. There will be two copies, one a ZIP
file, much like the one distributed at http://developer.android.com, and one uncom‐
pressed and ready to use.

Assuming you had already configured Eclipse for Android development using the in‐
structions at http://developer.android.com, you’ll need to carry out two additional steps
to use your newly built SDK. First, you’ll need to tell Eclipse the location of the new
SDK. To do so, go to Window→Preferences→Android, enter the path to the new SDK

Build Recipes | 135

www.it-ebooks.info

http://developer.android.com
http://developer.android.com
http://developer.android.com
http://www.it-ebooks.info/

in the SDK Location box, and click OK. Also, for reasons that aren’t entirely clear to me
at the time of this writing, you also need to go to Window→Android SDK Manager,
deselect all the items that might be selected except the first two under Tools, and then
click “Install 2 packages...” Once that is done, you’ll be able to create new projects using
the new SDK and access any new APIs you expose in it. If you don’t do that second step,
you’ll be able to create new Android projects, but none of them will resolve Java libraries
properly and will, therefore, never build.

Building the SDK for Windows
The instructions for building the SDK for Windows are slightly different from Linux
and Mac OS:

$. build/envsetup.sh
$ lunch sdk-eng
$ make win_sdk

The resulting output will be in out/host/windows/sdk/.

Building the CTS
If you want to build the CTS, you don’t need to use envsetup.sh or lunch. You can go
right ahead and type:

$ make cts
...
Generating test description for package android.sax
Generating test description for package android.performance
Generating test description for package android.graphics
Generating test description for package android.database
Generating test description for package android.text
Generating test description for package android.webkit
Generating test description for package android.gesture
Generating test plan CTS
Generating test plan Android
Generating test plan Java
Generating test plan VM
Generating test plan Signature
Generating test plan RefApp
Generating test plan Performance
Generating test plan AppSecurity
Package CTS: out/host/linux-x86/cts/android-cts.zip
Install: out/host/linux-x86/bin/adb

The cts command includes its own online help. Here’s the corresponding sample output
from 2.3/Gingerbread:

$ cd out/host/linux-x86/bin/
$./cts
Listening for transport dt_socket at address: 1337

136 | Chapter 4: The Build System

www.it-ebooks.info

http://www.it-ebooks.info/

Android CTS version 2.3_r3
$ cts_host > help
Usage: command options
Available commands and options:
 Host:
 help: show this message
 exit: exit cts command line
 Plan:
 ls --plan: list available plans
 ls --plan plan_name: list contents of the plan with specified name
 add --plan plan_name: add a new plan with specified name
 add --derivedplan plan_name -s/--session session_id -r/--result result_type:
 derive a plan from the given session
 rm --plan plan_name/all: remove a plan or all plans from repository
 start --plan test_plan_name: run a test plan
 start --plan test_plan_name -d/--device device_ID: run a test plan using the
 specified device
 start --plan test_plan_name -t/--test test_name: run a specific test
...
$ cts_host > ls --plan
List of plans (8 in total):
Signature
RefApp
VM
Performance
AppSecurity
Android
Java
CTS

Once you have a target up and running, such as the emulator, you can launch the test
suite and it will use adb to run tests on the target:

$./cts start --plan CTS
Listening for transport dt_socket at address: 1337
Android CTS version 2.3_r3
Device(emulator-5554) connected
cts_host > start test plan CTS

CTS_INFO >>> Checking API...

CTS_INFO >>> This might take several minutes, please be patient...
...

Building the NDK
As I had mentioned earlier, the NDK has its own separate build system, with its own
setup and help system, which you can invoke like this:

$ cd ndk/build/tools
$ export ANDROID_NDK_ROOT=aosp-root/ndk
$./make-release --help

Build Recipes | 137

www.it-ebooks.info

http://www.it-ebooks.info/

Usage: make-release.sh [options]

Valid options (defaults are in brackets):

 --help Print this help.
 --verbose Enable verbose mode.
 --release=name Specify release name [20110921]
 --prefix=name Specify package prefix [android-ndk]
 --development=path Path to development/ndk directory [/home/karim/
 opersys-dev/android/aosp-2.3.4/development/ndk]
 --out-dir=path Path to output directory [/tmp/ndk-release]
 --force Force build (do not ask initial question) [no]
 --incremental Enable incremental packaging (debug only). [no]
 --darwin-ssh=hostname Specify Darwin hostname to ssh to for the build.
 --systems=list List of host systems to build for [linux-x86]
 --toolchain-src-dir=path Use toolchain sources from path

When you are ready to build the NDK, you can invoke make-release as follows, and
witness its rather emphatic warning:

$./make-release
IMPORTANT WARNING !!

This script is used to generate an NDK release package from scratch
for the following host platforms: linux-x86

This process is EXTREMELY LONG and may take SEVERAL HOURS on a dual-core
machine. If you plan to do that often, please read docs/DEVELOPMENT.TXT
that provides instructions on how to do that more easily.

Are you sure you want to do that [y/N]
y
Downloading toolchain sources...
...

Updating the API
The build systems has safeguards in case you modify the AOSP’s core API. If you do,
the build will fail by default with a warning such as this:

You have tried to change the API from what has been previously approved.

To make these errors go away, you have two choices:
 1) You can add "@hide" javadoc comments to the methods, etc. listed in the
 errors above.

 2) You can update current.xml by executing the following command:
 make update-api

 To submit the revised current.xml to the main Android repository,
 you will need approval.

138 | Chapter 4: The Build System

www.it-ebooks.info

http://www.it-ebooks.info/

make: *** [out/target/common/obj/PACKAGING/checkapi-current-timestamp] Error 38
make: *** Waiting for unfinished jobs....

As the error message suggests, to get the build to continue, you’ll need to do something
like this:

$ make update-api
...
Install: out/host/linux-x86/framework/apicheck.jar
Install: out/host/linux-x86/framework/clearsilver.jar
Install: out/host/linux-x86/framework/droiddoc.jar
Install: out/host/linux-x86/lib/libneo_util.so
Install: out/host/linux-x86/lib/libneo_cs.so
Install: out/host/linux-x86/lib/libneo_cgi.so
Install: out/host/linux-x86/lib/libclearsilver-jni.so
Copying: out/target/common/obj/JAVA_LIBRARIES/core_intermediates/emma_out/lib/cl
asses-jarjar.jar
Install: out/host/linux-x86/framework/dx.jar
Install: out/host/linux-x86/bin/dx
Install: out/host/linux-x86/bin/aapt
Copying: out/target/common/obj/JAVA_LIBRARIES/bouncycastle_intermediates/emma_ou
t/lib/classes-jarjar.jar
Copying: out/target/common/obj/JAVA_LIBRARIES/ext_intermediates/emma_out/lib/cla
sses-jarjar.jar
Install: out/host/linux-x86/bin/aidl
Copying: out/target/common/obj/JAVA_LIBRARIES/core-junit_intermediates/emma_out/
lib/classes-jarjar.jar
Copying: out/target/common/obj/JAVA_LIBRARIES/framework_intermediates/emma_out/l
ib/classes-jarjar.jar
Copying current.xml

The next time you start make, you won’t get any more errors regarding API changes.
Obviously at this point you’re no longer compatible with the official APIs and are there‐
fore unlikely to be able to get certified as an “Android” device by Google.

Building a Single Module
Up to now, we’ve looked at building the entire tree. You can also build individual mod‐
ules. Here’s how you can ask the build system to build the Launcher2 module (i.e., the
Home screen):

$ make Launcher2

You can also clean modules individually:
$ make clean-Launcher2

If you’d like to force the build system to regenerate the system image to include your
updated module, you can add the snod target to the command line:

Build Recipes | 139

www.it-ebooks.info

http://www.it-ebooks.info/

6. This makefile is inspired by a blog post by Row Boat developer Amit Pundir and is based on the example
makefile provided in Chapter 4 of Building Embedded Linux Systems, 2nd ed. (O’Reilly).

$ make Launcher2 snod
==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=generic
...
target Package: Launcher2 (out/target/product/generic/obj/APPS/Launcher2_interme
diates/package.apk)
 'out/target/common/obj/APPS/Launcher2_intermediates//classes.dex' as 'classes.d
ex'...
Install: out/target/product/generic/system/app/Launcher2.apk
Install: out/host/linux-x86/bin/mkyaffs2image
make snod: ignoring dependencies
Target system fs image: out/target/product/generic/system.img

Building Out of Tree
If you’d ever like to build code against the AOSP and its Bionic library but don’t want
to incorporate that into the AOSP, you can use a makefile such as the following to get
the job done:6

Paths and settings
TARGET_PRODUCT = generic
ANDROID_ROOT = /home/karim/android/aosp-2.3.x
BIONIC_LIBC = $(ANDROID_ROOT)/bionic/libc
PRODUCT_OUT = $(ANDROID_ROOT)/out/target/product/$(TARGET_PRODUCT)
CROSS_COMPILE = \
 $(ANDROID_ROOT)/prebuilt/linux-x86/toolchain/arm-eabi-4.4.3/bin/arm-eabi-

Tool names
AS = $(CROSS_COMPILE)as
AR = $(CROSS_COMPILE)ar
CC = $(CROSS_COMPILE)gcc
CPP = $(CC) -E
LD = $(CROSS_COMPILE)ld
NM = $(CROSS_COMPILE)nm
OBJCOPY = $(CROSS_COMPILE)objcopy
OBJDUMP = $(CROSS_COMPILE)objdump
RANLIB = $(CROSS_COMPILE)ranlib
READELF = $(CROSS_COMPILE)readelf
SIZE = $(CROSS_COMPILE)size
STRINGS = $(CROSS_COMPILE)strings
STRIP = $(CROSS_COMPILE)strip

export AS AR CC CPP LD NM OBJCOPY OBJDUMP RANLIB READELF \
 SIZE STRINGS STRIP

Build settings

140 | Chapter 4: The Build System

www.it-ebooks.info

http://pundiramit.blogspot.com/2011/08/how-to-build-commom-linux-utils-for.html
http://www.it-ebooks.info/

CFLAGS = -O2 -Wall -fno-short-enums
HEADER_OPS = -I$(BIONIC_LIBC)/arch-arm/include \
 -I$(BIONIC_LIBC)/kernel/common \
 -I$(BIONIC_LIBC)/kernel/arch-arm
LDFLAGS = -nostdlib -Wl,-dynamic-linker,/system/bin/linker \
 $(PRODUCT_OUT)/obj/lib/crtbegin_dynamic.o \
 $(PRODUCT_OUT)/obj/lib/crtend_android.o \
 -L$(PRODUCT_OUT)/obj/lib -lc -ldl

Installation variables
EXEC_NAME = example-app
INSTALL = install
INSTALL_DIR = $(PRODUCT_OUT)/system/bin

Files needed for the build
OBJS = example-app.o

Make rules
all: example-app

.c.o:
 $(CC) $(CFLAGS) $(HEADER_OPS) -c $<

example-app: ${OBJS}
 $(CC) -o $(EXEC_NAME) ${OBJS} $(LDFLAGS)

install: example-app
 test -d $(INSTALL_DIR) || $(INSTALL) -d -m 755 $(INSTALL_DIR)
 $(INSTALL) -m 755 $(EXEC_NAME) $(INSTALL_DIR)

clean:
 rm -f *.o $(EXEC_NAME) core

distclean:
 rm -f *~
 rm -f *.o $(EXEC_NAME) core

In this case, you don’t need to care about either envsetup.sh or lunch. You can just go
ahead and type the magic incantation:

$ make

Obviously this won’t add your binary to any of the images generated by the AOSP. Even
the install target here will be of value only if you’re mounting the target’s filesystem
off NFS, and that’s valuable only during debugging, which is what this makefile is as‐
sumed to be useful for. To an extent, it could also be argued that using such a makefile
is actually counterproductive, since it’s far more complicated than the equivalent An
droid.mk that would result if this code were added as a module part of the AOSP.

Still, this kind of hack can have its uses. Under certain circumstances, for instance, it
might make sense to modify the conventional build system used by a rather large

Build Recipes | 141

www.it-ebooks.info

http://www.it-ebooks.info/

codebase to build that project against the AOSP yet outside of it; the alternative being
to copy the project into the AOSP and create Android.mk files to reproduce the me‐
chanics of its original conventional build system, which might turn out to be a sub‐
stantial endeavor in and of itself.

Building Recursively, In-Tree
You can, if you really want to, hack yourself a makefile to build within the AOSP a
component that is based on recursive makefiles instead of trying to reproduce the same
functionality using Android.mk files, as was suggested in the last section. Several of the
AOSP forks mentioned in Appendix E, for instance, include the kernel sources at the
top level of the AOSP and modify the AOSP’s main makefile to invoke the kernel’s
existing build system.

Here’s another example where an Android.mk was created by Linaro’s Bernhard
Rosenkränzer in order to build ffmpeg—which relies on a GNU autotools-like script—
using its original build files:

include $(CLEAR_VARS)
FFMPEG_TCDIR := $(realpath $(shell dirname $(TARGET_TOOLS_PREFIX)))
FFMPEG_TCPREFIX := $(shell basename $(TARGET_TOOLS_PREFIX))
FIXME remove -fno-strict-aliasing once the aliasing violations are fixed
FFMPEG_COMPILER_FLAGS = $(subst -I ,-I../../,$(subst -include \
system/core/include/arch/linux-arm/AndroidConfig.h,,$(subst -include \
build/core/combo/include/arch/linux-arm/AndroidConfig.h,, \
$(TARGET_GLOBAL_CFLAGS)))) -fno-strict-aliasing -Wno-error=address \
 -Wno-error=format-security
ifneq ($(strip $(SHOW_COMMANDS)),)
FF_VERBOSE="V=1"
endif

.PHONY: ffmpeg

droidcore: ffmpeg

systemtarball: ffmpeg

REALTOP=$(realpath $(TOP))

ffmpeg: x264 $(PRODUCT_OUT)/obj/STATIC_LIBRARIES/libvpx_intermediates/libvpx.a
mkdir -p $(PRODUCT_OUT)/obj/ffmpeg
cd $(PRODUCT_OUT)/obj/ffmpeg && \
export PATH=$(FFMPEG_TCDIR):$(PATH) && \
$(REALTOP)/external/ffmpeg/configure \
 --arch=arm \
 --target-os=linux \
 --prefix=/system \
 --bindir=/system/bin \
 --libdir=/system/lib \
 --enable-shared \

142 | Chapter 4: The Build System

www.it-ebooks.info

http://www.it-ebooks.info/

 --enable-gpl \
 --disable-avdevice \
 --enable-runtime-cpudetect \
 --disable-libvpx \
 --enable-libx264 \
 --enable-cross-compile \
 --cross-prefix=$(FFMPEG_TCPREFIX) \
 --extra-ldflags="-nostdlib -Wl,-dynamic-linker, \
/system/bin/linker,-z,muldefs$(shell if test $(PRODUCT_SDK_VERSION) -lt 16; \
then echo -n ',-T$(REALTOP)/$(BUILD_SYSTEM)/armelf.x'; fi),-z,nocopyreloc, \
--no-undefined -L$(REALTOP)/$(TARGET_OUT_STATIC_LIBRARIES) \
-L$(REALTOP)/$(PRODUCT_OUT)/system/lib \
-L$(REALTOP)/$(PRODUCT_OUT)/obj/STATIC_LIBRARIES/libvpx_intermediates -ldl -lc" \
 --extra-cflags="$(FFMPEG_COMPILER_FLAGS) \
-I$(REALTOP)/bionic/libc/include -I$(REALTOP)/bionic/libc/kernel/common \
-I$(REALTOP)/bionic/libc/kernel/arch-arm \
-I$(REALTOP)/bionic/libc/arch-arm/include -I$(REALTOP)/bionic/libm/include \
-I$(REALTOP)/external/libvpx -I$(REALTOP)/external/x264" \
 --extra-libs="-lgcc" && \
$(MAKE) \
TARGET_CRTBEGIN_DYNAMIC_O=$(REALTOP)/$(TARGET_CRTBEGIN_DYNAMIC_O) \
TARGET_CRTEND_O=$(REALTOP)/$(TARGET_CRTEND_O) $(FF_VERBOSE) && \
$(MAKE) install DESTDIR=$(REALTOP)/$(PRODUCT_OUT)

Basic AOSP Hacks
You most likely bought this book with one thing in mind: to hack the AOSP to fit your
needs. Over the next few pages, we’ll start looking into some of the most obvious hacks
you’ll likely want to try. Of course we’re only setting the stage here with the parts that
pertain to the build system, which is where you’ll likely want to start anyway.

While the following explanations are based on 2.3/Gingerbread, they’ll
work just the same on 4.2/Jelly Bean, and likely many versions after that
one, too. The fact is, these mechanisms have been constant for quite
some time. Still, where relevant, changes in 4.2/Jelly Bean are
highlighted.

Adding a Device
Adding a custom device is most likely one of the topmost items (if not the topmost) on
your list of reasons for reading this book. I’m about to show you how to do just that, so
you’ll likely want to bookmark this section. Of course I’m actually only showing you
the build aspects of the work. There are a lot more steps involved in porting Android
to new hardware. Still, adding the new device to the build system will definitely be one
of the first things you do. Fortunately, doing that is relatively straightforward.

Basic AOSP Hacks | 143

www.it-ebooks.info

http://www.it-ebooks.info/

For the purposes of the current exercise, assume you work for a company called ACME
and that you’re tasked with delivering its latest gizmo: the CoyotePad, intended to be
the best platform for playing all bird games. Let’s get started by creating an entry for our
new device in device/:

$ cd ~/android/aosp-2.3.x
$. build/envsetup.sh
$ mkdir -p device/acme/coyotepad
$ cd device/acme/coyotepad

The first thing we’ll need in here is an AndroidProducts.mk file to describe the various
AOSP products that could be built for the CoyotePad:

PRODUCT_MAKEFILES := \
 $(LOCAL_DIR)/full_coyotepad.mk

While we could describe several products (see build/target/product/AndroidProd
ucts.mk for an example), the typical case is to specify just one, as in this case, and it’s
described in full_coyotepad.mk:

$(call inherit-product, $(SRC_TARGET_DIR)/product/languages_full.mk)
If you're using 4.2/Jelly Bean, use full_base.mk instead of full.mk
$(call inherit-product, $(SRC_TARGET_DIR)/product/full.mk)

DEVICE_PACKAGE_OVERLAYS :=

PRODUCT_PACKAGES +=
PRODUCT_COPY_FILES +=

PRODUCT_NAME := full_coyotepad
PRODUCT_DEVICE := coyotepad
PRODUCT_MODEL := Full Android on CoyotePad, meep-meep

It’s worth taking a closer look at this makefile. First, we’re using the inherit-product
function to tell the build system to pull in other product descriptions as the basis of
ours. This allows us to build on other people’s work and not have to specify from scratch
every bit and piece of the AOSP that we’d like to include. languages_full.mk will pull in
a vast number of locales, and full.mk will make sure we get the same set of modules as
if we had built using the full-eng combo.

With regard to the other variables:
DEVICE_PACKAGE_OVERLAYS

Allows us to specify a directory that will form the basis of an overlay that will be
applied onto the AOSP’s sources, thereby allowing us to substitute default package
resources with device-specific resources. You’ll find this useful if you’d like to set
custom layouts or colors for Launcher2 or other apps, for instance. We’ll look at
how to use this in the next section.

144 | Chapter 4: The Build System

www.it-ebooks.info

http://www.it-ebooks.info/

PRODUCT_PACKAGES

Allows us to specify packages we’d like to have this product include in addition to
those specified in the products we’re already inheriting from. If you have custom
apps, binaries, or libraries located within device/acme/coyotepad/, for instance,
you’ll want to add them here so that they are included in the final images generated.
Notice the use of the += sign. It allows us to append to the existing values in the
variable instead of substituting its content.

PRODUCT_COPY_FILES

Allows us to list specific files we’d like to see copied to the target’s filesystem and
the location where they need to be copied. Each source/destination pair is colon-
separated, and pairs are space-separated among themselves. This is useful for con‐
figuration files and prebuilt binaries such as firmware images or kernel modules.

PRODUCT_NAME

The TARGET_PRODUCT, which you can set either by selecting a lunch combo or pass‐
ing it as part of the combo parameter to lunch, as in:

$ lunch full_coyotepad-eng

PRODUCT_DEVICE

The name of the actual finished product shipped to the customer. TARGET_DEVICE
derives from this variable. PRODUCT_DEVICE has to match an entry in device/acme/,
since that’s where the build looks for the corresponding BoardConfig.mk. In this
case, the variable is the same as the name of the directory we’re already in.

PRODUCT_MODEL

The name of this product as provided in the “Model number” in the “About the
phone” section of the settings. This variable actually gets stored as the ro.prod
uct.model global property accessible on the device.

Version 4.2/Jelly Bean also includes a PRODUCT_BRAND that is typically set to Android.
The value of this variable is then available as the ro.product.brand global property.
The latter is used by some parts of the stack that take action based on the device’s vendor.

Now that we’ve described the product, we must also provide some information regard‐
ing the board the device is using through a BoardConfig.mk file:

TARGET_NO_KERNEL := true
TARGET_NO_BOOTLOADER := true
TARGET_CPU_ABI := armeabi
BOARD_USES_GENERIC_AUDIO := true

USE_CAMERA_STUB := true

This is a very skinny BoardConfig.mk and ensures that we actually build successfully.
For a real-life version of that file, have a look at device/samsung/crespo/BoardConfig

Basic AOSP Hacks | 145

www.it-ebooks.info

http://www.it-ebooks.info/

Common.mk in 2.3/Gingerbread, and also at device/asus/grouper/BoardConfigCom
mon.mk in 4.2/Jelly Bean.

You’ll also need to provide a conventional Android.mk in order to build all the modules
that you might have included in this device’s directory:

LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)

ifneq ($(filter coyotepad,$(TARGET_DEVICE)),)
include $(call all-makefiles-under,$(LOCAL_PATH))
endif

It’s in fact the preferred modus operandi to put all device-specific apps, binaries, and
libraries within the device’s directory instead of globally within the rest of the AOSP. If
you do add modules here, don’t forget to also add them to PRODUCT_PACKAGES as I
explained earlier. If you just put them here and provide them valid Android.mk files,
they’ll build, but they won’t be in the final images.

If you have several products sharing the same set of packages, you may want to create
a device/acme/common/ directory containing the shared packages. You can see an ex‐
ample of this in 4.2/Jelly Bean’s device/generic/ directory. In that same version, you can
also check how device/samsung/maguro/device.mk inherits from device/samsung/tuna/
device.mk for an example of how one device can be based on another device.

Lastly, let’s close the loop by making the device we just added visible to envsetup.sh and
lunch. To do so, you’ll need to add a vendorsetup.sh in your device’s directory:

add_lunch_combo full_coyotepad-eng

You also need to make sure that it’s executable if it’s to be operational:
$ chmod 755 vendorsetup.sh

We can now go back to the AOSP’s root and take our brand-new ACME CoyotePad for
a runchase:

$ croot
$. build/envsetup.sh
$ lunch

You're building on Linux

Lunch menu... pick a combo:
 1. generic-eng
 2. simulator
 3. full_coyotepad-eng
 4. full_passion-userdebug
 5. full_crespo4g-userdebug
 6. full_crespo-userdebug

146 | Chapter 4: The Build System

www.it-ebooks.info

http://www.it-ebooks.info/

Which would you like? [generic-eng] 3

==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=full_coyotepad
TARGET_BUILD_VARIANT=eng
TARGET_SIMULATOR=false
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=arm
HOST_ARCH=x86
HOST_OS=linux
HOST_BUILD_TYPE=release
BUILD_ID=GINGERBREAD
==

$ make -j16

As you can see, the AOSP now recognizes our new device and prints the information
correspondingly. When the build is done, we’ll also have the same type of output pro‐
vided in any other AOSP build, except that it will be a product-specific directory:

$ ls -al out/target/product/coyotepad/
total 89356
drwxr-xr-x 7 karim karim 4096 2011-09-21 19:20 .
drwxr-xr-x 4 karim karim 4096 2011-09-21 19:08 ..
-rw-r--r-- 1 karim karim 7 2011-09-21 19:10 android-info.txt
-rw-r--r-- 1 karim karim 4021 2011-09-21 19:41 clean_steps.mk
drwxr-xr-x 3 karim karim 4096 2011-09-21 19:11 data
-rw-r--r-- 1 karim karim 20366 2011-09-21 19:20 installed-files.txt
drwxr-xr-x 14 karim karim 4096 2011-09-21 19:20 obj
-rw-r--r-- 1 karim karim 327 2011-09-21 19:41 previous_build_config.mk
-rw-r--r-- 1 karim karim 2649750 2011-09-21 19:43 ramdisk.img
drwxr-xr-x 11 karim karim 4096 2011-09-21 19:43 root
drwxr-xr-x 5 karim karim 4096 2011-09-21 19:19 symbols
drwxr-xr-x 12 karim karim 4096 2011-09-21 19:19 system
-rw------- 1 karim karim 87280512 2011-09-21 19:20 system.img
-rw------- 1 karim karim 1505856 2011-09-21 19:14 userdata.img

Also, have a look at the build.prop file in system/. It contains various global properties
that will be available at runtime on the target and that relate to our configuration and
build:

begin build properties
autogenerated by buildinfo.sh
ro.build.id=GINGERBREAD
ro.build.display.id=full_coyotepad-eng 2.3.4 GINGERBREAD eng.karim.20110921.1908
49 test-keys
ro.build.version.incremental=eng.karim.20110921.190849
ro.build.version.sdk=10
ro.build.version.codename=REL
ro.build.version.release=2.3.4

Basic AOSP Hacks | 147

www.it-ebooks.info

http://www.it-ebooks.info/

ro.build.date=Wed Sep 21 19:10:04 EDT 2011
ro.build.date.utc=1316646604
ro.build.type=eng
ro.build.user=karim
ro.build.host=w520
ro.build.tags=test-keys
ro.product.model=Full Android on CoyotePad, meep-meep
ro.product.brand=generic
ro.product.name=full_coyotepad
ro.product.device=coyotepad
ro.product.board=
ro.product.cpu.abi=armeabi
ro.product.manufacturer=unknown
ro.product.locale.language=en
ro.product.locale.region=US
ro.wifi.channels=
ro.board.platform=
ro.build.product is obsolete; use ro.product.device
ro.build.product=coyotepad
Do not try to parse ro.build.description or .fingerprint
ro.build.description=full_coyotepad-eng 2.3.4 GINGERBREAD eng.karim.20110921.190
849 test-keys
ro.build.fingerprint=generic/full_coyotepad/coyotepad:2.3.4/GINGERBREAD/eng.kari
m.20110921.190849:eng/test-keys
end build properties
...

You may want to carefully vet the default properties before using the
build on a real device. Some developers have encountered some severe
issues due to default values. In both 2.3/Gingerbread and 4.2/Jelly Bean,
for instance, ro.com.android.dataroaming is set to true in some
builds. Hence, if you’re doing development on a device connected to a
live cell network, changing the value to false might save you some
money.

As you can imagine, there’s a lot more to be done here to make sure the AOSP runs on
our hardware. But the preceding steps give us the starting point. However, by isolating
the board-specific changes in a single directory, this configuration will simplify adding
support for the CoyotePad to the next version of the AOSP that gets released. Indeed,
it’ll just be a matter of copying the corresponding directory to the new AOSP’s device/
directory and adjusting the code therein to use the new APIs.

Adding an App
Adding an app to your board is relatively straightforward. As a starter, try creating a
HelloWorld! app with Eclipse and the default SDK; all new Android projects in Eclipse

148 | Chapter 4: The Build System

www.it-ebooks.info

http://www.it-ebooks.info/

are a HelloWorld! by default. Then copy that app from the Eclipse workspace to its
destination:

$ cp -a ~/workspace/HelloWorld ~/android/aosp-2.3.x/device/acme/coyotepad/

You’ll then have to create an Android.mk file in aosp-root/device/acme/coyotepad/
HelloWorld/ to build that app:

LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)

LOCAL_MODULE_TAGS := optional
LOCAL_SRC_FILES := $(call all-java-files-under, src)
LOCAL_PACKAGE_NAME := HelloWorld

include $(BUILD_PACKAGE)

Given that we’re tagging this module as optional, it won’t be included by default in the
AOSP build. To include it, you’ll need to add it to the PRODUCT_PACKAGES listed in the
CoyotePad’s full_coyotepad.mk.

If, instead of adding your app for your board only, you would like to add a default app
globally to all products generated by the AOSP alongside the existing stock apps, you’ll
need to put it in packages/apps/ instead of your board’s directory. You’ll also need to
modify one of the built-in .mk files, such as aosp-root/build/target/product/core.mk, to
have your app built by default. This is not recommended, though, as it’s not very portable
since it will require you to make this modification to every new AOSP release. As I stated
earlier, it’s best to keep your custom modifications in device/acme/coyotepad/ in as much
as possible.

Adding an App Overlay
Sometimes you don’t actually want to add an app but would rather modify existing ones
included by default in the AOSP. That’s what app overlays are for. Overlays are a mech‐
anism included in the AOSP to allow device manufacturers to change the resources
provided (such as for apps), without actually modifying the original resources included
in the AOSP. To use this capability, you must create an overlay tree and tell the build
system about it. The easiest location for an overlay is within a device-specific directory
such as the one we created in the previous section:

$ cd device/acme/coyotepad/
$ mkdir overlay

To tell the build system to take this overlay into account, we need to modify our full_coy
otepad.mk such that:

DEVICE_PACKAGE_OVERLAYS := device/acme/coyotepad/overlay

Basic AOSP Hacks | 149

www.it-ebooks.info

http://www.it-ebooks.info/

At this point, though, our overlay isn’t doing much. Let’s say we want to modify some
of Launcher2’s default strings. We could then do something like this:

$ mkdir -p overlay/packages/apps/Launcher2/res/values
$ cp aosp-root/packages/apps/Launcher2/res/values/strings.xml \
> overlay/packages/apps/Launcher2/res/values/

You can then trim your local strings.xml to override only those strings that you need.
Most importantly, your device will have a Launcher2 that has your custom strings, but
the default Launcher2 will still have its original strings. So if someone relies on the same
AOSP sources you’re using to build for another product, they’ll still get the original
strings. You can, of course, replace most resources like this, including images and XML
files. So long as you put the files in the same hierarchy as they are found in the AOSP
but within device/acme/coyotepad/overlay/, they’ll be taken into account by the build
system.

Overlays can be used only for resources. You can’t overlay source code.
If you want to customize parts of Android’s internals, for instance, you’ll
still have to make those modifications in situ. There’s no way, currently
at least, to isolate those changes to your board.

Adding a Native Tool or Daemon
Like the example above of adding an app for your board, you can add your custom
native tools and daemons as subdirectories of device/acme/coyotepad/. Obviously, you’ll
need to provide an Android.mk in the directory containing the code to build that
module:

LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)

LOCAL_MODULE := hello-world
LOCAL_MODULE_TAGS := optional
LOCAL_SRC_FILES := hello-world.cpp
LOCAL_SHARED_LIBRARIES := liblog

include $(BUILD_EXECUTABLE)

As in the app’s case, you’ll also need to make sure hello-world is part of the CoyotePad’s
PRODUCT_PACKAGES.

If you intend to add your binary globally for all product builds instead of just locally to
your board, you need to know that there are a number of locations in the tree where
native tools and daemons are located. Here are the most important ones:
system/core/ and system/

Custom Android binaries that are meant to be used outside the Android Framework
or are standalone pieces.

150 | Chapter 4: The Build System

www.it-ebooks.info

http://www.it-ebooks.info/

frameworks/base/cmds/
Binaries that are tightly coupled to the Android Framework. This is where the
Service Manager and installd are found, for example.

external/
Binaries that are generated by an external project that is imported into the AOSP.
strace, for instance, is here.

Having identified from the list above where the code generating your binary should go,
you’ll also need to add it as part of one of the global .mk files such as aosp-root/build/
target/product/core.mk. As I said above, however, such global additions are not recom‐
mended since they can’t be transferred as easily to newer AOSP versions.

Adding a Native Library
Like apps and binaries, you can also add native libraries for your board. Assuming, as
above, that the sources to build the library are in a subdirectory of device/acme/coyote
pad/, you’ll need an Android.mk to build your library:

LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)

LOCAL_MODULE := libmylib
LOCAL_MODULE_TAGS := optional
LOCAL_PRELINK_MODULE := false
LOCAL_SRC_FILES := $(call all-c-files-under,.)

include $(BUILD_SHARED_LIBRARY)

Note that LOCAL_PRELINK_MODULE has been removed and is no longer
necessary as of 4.0/Ice-Cream Sandwich.

To use this library, you must add it to the libraries listed by the Android.mk file of
whichever binaries depend on it:

LOCAL_SHARED_LIBRARIES := libmylib

You’ll also likely need to add relevant headers to an include/ directory located in about
the same location as you put your library, so that the code that needs to link against your
library can find those headers, such as device/acme/coyotepad/include/.

Should you want to make your library apply globally to all AOSP builds, not just your
device, you’ll need a little bit more information regarding the various locations where
libraries are typically found in the tree. First, you should know that, unlike binaries, a
lot of libraries are used within a single module but nowhere else. Hence, these libraries

Basic AOSP Hacks | 151

www.it-ebooks.info

http://www.it-ebooks.info/

will typically be placed within that module’s code and not in the usual locations where
libraries used systemwide are found. The latter are typically in the following locations:
system/core/

Libraries used by many parts of the system, including some outside the Android
Framework. This is where liblog is, for instance.

frameworks/base/libs/
Libraries intimately tied to the framework. This is where libbinder is.

frameworks/native/libs/
In 4.2/Jelly Bean, many libraries that were in frameworks/base/libs/ in 2.3/Ginger‐
bread have been moved out and into frameworks/native/libs/.

external/
Libraries generated by external projects imported into the AOSP. OpenSSL’s libssl
is here.

Similarly, instead of using a CoyotePad-specific include directory, you’d use a global
directory such as system/core/include/ or frameworks/base/include/ or, in 4.2/Jelly Bean,
frameworks/base/include/. Again, as stated earlier, you should carefully review whether
such global additions are truly required, as they’ll represent additional work when you
try to port for your device to the next version of Android.

Library Prelinking
If you look closely at the example Android.mk we provide for the library, you’ll notice a
LOCAL_PRELINK_MODULE variable. To reduce the time it takes to load libraries, Android
versions up to 2.3/Gingerbread used to prelink most of their libraries. Prelinking is done
by specifying ahead of time the address location where the library will be loaded instead
of letting it be figured out at runtime. The file where the addresses are specified in 2.3/
Gingerbread is build/core/prelink-linux-arm.map, and the tool that does the mapping is
called apriori. It contains entries such as these:

core system libraries
libdl.so 0xAFF00000 # [<64K]
libc.so 0xAFD00000 # [~2M]
libstdc++.so 0xAFC00000 # [<64K]
libm.so 0xAFB00000 # [~1M]
liblog.so 0xAFA00000 # [<64K]
libcutils.so 0xAF900000 # [~1M]
libthread_db.so 0xAF800000 # [<64K]
libz.so 0xAF700000 # [~1M]
libevent.so 0xAF600000 # [???]
libssl.so 0xAF400000 # [~2M]
...
assorted system libraries
libsqlite.so 0xA8B00000 # [~2M]

152 | Chapter 4: The Build System

www.it-ebooks.info

http://www.it-ebooks.info/

libexpat.so 0xA8A00000 # [~1M]
libwebcore.so 0xA8300000 # [~7M]
libbinder.so 0xA8200000 # [~1M]
libutils.so 0xA8100000 # [~1M]
libcameraservice.so 0xA8000000 # [~1M]
libhardware.so 0xA7F00000 # [<64K]
libhardware_legacy.so 0xA7E00000 # [~1M]
...

If you want to add a custom native library to 2.3/Gingerbread, you need to either add
it to the list of libraries in prelink-linux-arm.map or set the LOCAL_PRELINK_MODULE to
false. The build will fail if you forget to do one of these.

Library prelinking was dropped starting in 4.0/Ice-Cream Sandwich.

Basic AOSP Hacks | 153

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Hardware Primer

Now that you have a good handle on Android’s build system, the next step is to incre‐
mentally explore how the built images are used on the target. To best accomplish that,
we must step back and look at the hardware configurations Android is typically run on.
Indeed, while Android can be made to run on a wide variety of embedded systems, it
remains deeply rooted in the world of consumer electronics and, most notably, handsets.

We’re going to start by going over the typical system architecture of a hardware platform
made for running Android. We’ll then discuss the architecture of a typical SoC and
provide an overview of some of the more notable SoCs out there used to run Android.
We’ll also cover the difference between virtual and physical address spaces, the typical
host-target debug setup, and finish the chapter with a list of evaluation boards that you
could use to prototype your embedded Android system and/or use to learn the trade.

Typical System Architecture
As we discussed in Chapter 1, Android should run on any hardware that runs Linux.
Android, however, wasn’t built in a vacuum. It was originally designed for handsets, and
its current architecture still reflects that. Figure 5-1 illustrates the architecture block
diagram of a prototypical embedded system made to run Android. Your actual target
will likely differ, possibly greatly, from the one I illustrate. But for the sake of discussion,
this diagram should be good enough.

155

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-1. Typical system architecture block diagram

The most important thing to note is that at the center of this system lies an SoC. We’ll
discuss SoCs in greater detail in the next section. Suffice it to say for now that an SoC
comprises a CPU and a bunch of peripheral controllers all on the same integrated circuit
(IC) die. All other components on the target’s board are typically connected in one way
or another to the SoC. Android essentially runs on that SoC and therefore controls and/
or accesses everything on the board from that vantage point.

156 | Chapter 5: Hardware Primer

www.it-ebooks.info

http://www.it-ebooks.info/

The Baseband Processor
The next component you want to pay attention to is the Baseband Processor. The ma‐
jority of handsets on the market have separate processing units for running the user-
facing software and managing the radio functions. These are typically known as the
Application Processor (AP) and the Baseband Processor (BP), respectively.

You might wonder why there are two separate processors instead of just one. The reasons
are both legal and technical. First, in the US, the law requires that software-defined radio
(SDR) devices be certified by the Federal Communications Commission (FCC). Part of
this certification is a requirement that the software controlling the radio may not be
modified without authorization. Essentially, this means that under no circumstance
should the end user of the device be allowed to change the way the radio operates or
which frequencies it uses. In addition, there are hard real-time constraints on the op‐
eration of the radio functions. Hence, controlling the radio from the same CPU running
the user-facing OS is not an option. There are also benefits in being able to put the AP
to sleep while the BP continues operating.

Of course this is but a summary, and there is much more to say on this topic. However,
for the purposes of our current discussion, assume that there’s no way to have a single
processor running both Android and the software that controls the radio. Obviously if
your embedded system isn’t a handset, or doesn’t have radio functions, just assume that
the diagram doesn’t have a BP or any of the components attached to it.

Nevertheless, it’s worth understanding the BP and its interaction with the AP, since the
architecture of Android’s RIL is tightly coupled to the underlying hardware. At a very
simple level, the BP and AP talk to each other over some form of serial bus using AT
commands. Notice that the BP has its own flash and RAM. This guarantees that the
certified software running on the BP is isolated from the software running on the AP,
and that the real-time OS (RTOS) running on the BP is focused on running a single
thing: the radio’s operation. The BP, for instance, runs software implementing the GSM
stack. Notice also that the SIM card and an RF transceiver are connected to the BP. The
transceiver takes care of the actual RF transmission and reception with the tower, while
the SIM card is used to identify the handset user with the mobile network operator
(MNO).

Typical System Architecture | 157

www.it-ebooks.info

http://www.it-ebooks.info/

Telephony and wireless radio technologies are a world of their own.
There is definitely a lot more to this topic than I could cover here. In
fact, I’m barely scratching the surface. Real-life designs are infinitely
more subtle than my simplification. Modern AP-BP interaction, for in‐
stance, may not actually rely on either a serial line or AT commands,
but rather use mapped memory and proprietary handshake protocols.
For the sake of the current conversation, though, the simple explanation
is again good enough.
If you’d like to get more information on the radio architecture of smart‐
phones, I would suggest reading Harald Welte’s “Anatomy of contem‐
porary GSM cellphone hardware” and visiting this xda-developers
thread.

Core Components
Although many of the components we’ll discuss may or may not be present in your
embedded system, a handful would most certainly be present in any embedded system,
be it Android or another: RAM and storage. There isn’t much to be said about RAM,
but the storage may come in different incarnations.

Traditionally, most embedded systems would be equipped with either NOR or NAND
flash, and a flash filesystem would be used to manage those chips and implement wear-
leveling. More recently, however, the trend has been toward using embedded Multi‐
MediaCard (eMMC) chips. Essentially, these are chips that appear as SD cards and are
managed by the Linux kernel as a traditional block device (i.e., the same as a conven‐
tional ATA hard drive). Hence, these systems don’t have any NOR or NAND flash, just
an eMMC chip. Their SoC chips have the required modules to do basic reads and boot
directly from a partition on the eMMC.

Also, there may be more than one storage device attached to the system. Android in fact
distinguishes between “internal” and “external” storage. “Internal” storage typically
designates the onboard eMMC, while “external” storage designates the user-removable
SD card attached to the phone or tablet. The former hosts Android itself and is used for
booting and regular filesystem operations. The latter stores pictures and other multi‐
media content. Of course, this distinction is of little use to you if your device isn’t a
phone or a tablet, but the Android App Development API reflects Android’s phone
heritage and makes a distinction between those two types of storage.

Note that on some more recent devices, the “external” storage is nothing
more than a FUSE (Filesystem in User SpacE)–mounted filesystem over
a specific directory of the system’s “internal” storage. Such is the case of
all modern Nexus devices, such as the Galaxy Nexus, Nexus 4, 7,
and 10.

158 | Chapter 5: Hardware Primer

www.it-ebooks.info

http://bit.ly/VPMQWm
http://bit.ly/VPMQWm
http://bit.ly/10hn6ky
http://bit.ly/10hn6ky
http://www.it-ebooks.info/

Another component that you are likely to find in any battery-powered device is a Power
Management IC (PMIC). The PMIC’s job is to manage all aspects of the battery, in‐
cluding regulating the voltage it provides and controlling its charging. The PMIC is
typically connected to the battery and whatever DC power is used to feed the board. On
most consumer devices, the external DC power comes from the USB On-the-Go (OTG)
connector, which doubles as a plug for the power charger. In the case of nonmobile
devices (and even in the case of some mobile devices), the external power isn’t provided
through USB but through some other type of connector, such as a barrel connector.

The PMIC is connected to the SoC through SPI, I2C, and/or GPIO. It can generate
interrupts for such things as low battery or the charger being attached. It can (and
increasingly does) also include functionality other than just power management. For
instance, it may include a real-time clock (RTC), an audio codec, and a USB transceiver.

Real-World Interaction
Android is of course mainly a user-facing system. As suggested by its Compatibility
Definition Document (CDD), a system built with it should allow rich user interaction
and comprise quite a few hardware components that allow tying in to the user’s imme‐
diate physical surroundings. This, in turn, means that there are quite a few hardware
components dedicated to this task.

First and foremost, there are the parts tied to direct user interaction, such as the display,
touch input, and the keyboard. While phones typically use the SoC’s integrated display
capabilities directly, devices with larger displays, such as tablets, will typically have a
display bridge for low-voltage differential signaling (LVDS)–driven LCD displays.
There’s also typically a touch controller for handling the onscreen touch sensors and
some form of circuitry for handling the use of a keyboard or any physical button on the
device.

Second, there are parts that allow the user to have the device interact with the world
around it. This includes things such as the camera (or cameras—e.g., some devices have
both front- and rear-facing cameras, for video chatting), which is controlled by the SoC,
and audio I/O, which is controlled by the audio codec IC. But hardware also includes a
variety of components for sensing the physical properties of the device’s immediate
environment and mechanically interacting with it.

A wide range of sensors, for example, may be found in an Android device, such as an
accelerometer, a gyroscope, a thermometer, a barometer, a photometer, a magnetometer,
and a proximity sensor. I’ve illustrated only a “Sensors” IC to simplify the diagram, but
there can in fact be many sensor ICs on the board. There are also components for
creating vibrations and/or providing haptic feedback to the user. Again, several com‐
ponents may be involved.

Typical System Architecture | 159

www.it-ebooks.info

http://www.it-ebooks.info/

Connectivity
One of Android’s features is its connectivity, and the hardware used to run it reflects
this with controllers, connectors, and antennas for a range of standards such as USB,
WiFi, Bluetooth, GPS, and NFC. Again, these tend to increasingly be packaged together
instead of being separate ICs.

Most consumer Android devices on the market provide only a USB OTG connector for
connecting the device to a computer or plugging in another USB device, such as a camera
or a USB stick. A very limited number of devices will also allow the USB OTG connector
to be used as a USB host. Even fewer devices provide separate USB host connectors for
plugging in peripherals, as you typically would to a USB host such as a PC or a Mac.

Expansion, Development, and Debugging
In addition to the typical components found in the mainstream Android devices I just
covered, SoCs can also generally accommodate a slew of other components and pe‐
ripherals. While most of these won’t be found in consumer handsets or tablets, they can
definitely be used in other Android-based embedded systems. Some are more or less
well supported by the Android stack, while others aren’t at all. But that’s what got you
into embedded development anyway, right? To boldly go where no other sane developer
would?

Hence, you’ll easily find development boards equipped with components and connec‐
tors for Ethernet, USB host, serial (RS-232), JTAG, and expansion headers. The popular
BeagleBoard and PandaBoard, for instance, have most of these. JTAG is a hardware-
level debugging interface and therefore doesn’t need any software support from either
the Linux kernel or the Android stack. Expansion headers exposed by development
boards will usually allow a peripheral board (i.e., add-on modules connected through
the expansion headers) to be connected to some of the SoC’s pins, such as I2C or GPIO.
It’ll then be up to you to make sure you load the appropriate device drivers to enable
Linux to talk to the peripherals on the add-on module.

Serial port connectivity is provided by the Linux kernel’s TTY layer. So long as your
kernel has support for console on serial for your SoC (as it typically would if Linux runs
on your SoC), this should work practically “out of the box.” Serial-port connectivity is
crucial for embedded systems, especially during board bringup, since it’s a simple yet
effective way for the host and target to communicate.

USB host mode will work if you are using Android 3.1 or later. Earlier versions, including
Gingerbread, do not have USB host mode support in the Android stack. But that doesn’t
preclude the underlying Linux kernel from supporting the same set of USB devices it
does by default. It only means that the app API for USB host mode, available starting
with Android 3.1, won’t be available to you.

160 | Chapter 5: Hardware Primer

www.it-ebooks.info

http://www.it-ebooks.info/

A similar situation affects Ethernet. While you can connect an Android device using an
Ethernet connection to a network, the Android stack doesn’t recognize Ethernet as a
valid data communication path—only WiFi and packet switching (i.e., your wireless
carrier’s data connection.) Hence, while some applications will work when the Ethernet
connection is properly set, some others won’t.

Adding Ethernet Support to Android
Android doesn’t currently deal properly with Ethernet by default, but that hasn’t stopped
those needing Ethernet from supporting it. If you’re interested in this type of function‐
ality, have a look at the following work:

• Fabien Brisset and Benjamin Zores have put together a set of patches for 4.0/Ice-
Cream Sandwich and 4.1/Jelly Bean to support Ethernet. The patches are on Git‐
Hub, and you can find the presentation Benjamin did about this work at the Em‐
bedded Linux Conference Europe in November 2012.

• Linaro has created its own set of patches for adding the same functionality. These
changes are available here, here, and here.

It’s understandable that the AOSP doesn’t officially support Ethernet at this point: It’s
not a technology commonly found in the type of devices where Google is pushing An‐
droid. Should Android be aimed at other types of devices in the future, this may change.

What’s in a System-on-Chip (SoC)?
Up to this point, we’ve discussed the SoC as a black box. Let’s take a peek inside and see
what’s in there. Have a look at Figure 5-2 for a representation of the internals of a typical
SoC.

What’s in a System-on-Chip (SoC)? | 161

www.it-ebooks.info

https://github.com/gxben/aosp-ethernet
https://github.com/gxben/aosp-ethernet
http://www.slideshare.net/gxben/elce-2012-dive-into-android-networking-adding-ethernet-connectivity
http://www.slideshare.net/gxben/elce-2012-dive-into-android-networking-adding-ethernet-connectivity
http://review.android.git.linaro.org/#change,2599
http://review.android.git.linaro.org/#change,2598
http://review.android.git.linaro.org/#change,2554
http://www.it-ebooks.info/

Figure 5-2. A typical System-on-Chip (SoC)

As you can see, there’s much more than the CPU cores. An SoC is to some extent its
own circuit board, with a bus interconnecting a variety of different components (typi‐
cally known as the “interconnect fabric”). The number and complexity of each compo‐
nent depends on the SoC and its manufacturer. There’s no real standard here, although
most SoCs on the market include a similar set of basic components that are essentially
interchangeable, even though they come from different manufacturers. And as in the
case of the system architecture block diagram covered earlier, many of these components
may be grouped together or even further divided into additional modules. This, after
all, is a simplified view. Note also that not all components within an SoC operate at the
same clock speed. So while the CPU may be listed as operating close to or above the
gigahertz mark, for instance, the graphics processing unit (GPU) is likely operating at
several hundred megahertz only.

GPUs typically have a clock speed divided down from the CPU’s own
speed. If the CPU is clocked at 1GHz, for instance, the GPU may be
running at 250MHz. Though they run slower, GPUs are made up of
massively parallel computing units. Even if the CPU is dual-core, the
GPU may have 16 or 64 cores.

162 | Chapter 5: Hardware Primer

www.it-ebooks.info

http://www.it-ebooks.info/

Table 5-1 lists some of the most prominent SoCs used for Android at the time of this
writing. As you can see, the market is increasingly offering dual-core Android devices,
and quad-core devices are just around the corner. Manufacturers are “out-coring”
themselves as fast as they can. That doesn’t mean your embedded Android system needs
to have that much firepower, but chances are that component pricing will bring the cost
of a multicore SoC within your design’s reach in the foreseeable future.

Table 5-1. SoC lineup
SoC Manufacturer CPU Speed GPU

OMAP3 Texas Instruments (TI) ARM Cortex-A8 600MHz−1.2GHz PowerVR SGX530

OMAP4 TI Dual-core ARM Cortex-A9 1−1.8GHz PowerVR SGX54x

OMAP5 TI Dual-core ARM Cortex-A15 2GHz PowerVR SGX544

i.MX51 Freescale Cortex-A8 800MHz OpenGL ES 2.0-compatiblea

i.MX53 Freescale Cortex-A8 1GHz OpenGL ES 2.0-compatible

i.MX6 Freescale Dual- or quad-core Cortex-A9 1GHz OpenGL ES 2.0-compatible

Tegra 2 Nvidia Dual-core ARM Cortex-A9 1−1.2GHz GeForce

Tegra 3 Nvidia Quad-core ARM Cortex-A9 1.3GHz GeForce

Snapdragon S2 Qualcomm Scorpionb 800MHz−1.5GHz Adreno 205

Snapdragon S3 Qualcomm Dual-core Scorpion 1.2−1.5GHz Adreno 220

Snapdragon S4 Qualcomm Dual-core Kraitc 1−1.7GHz Adreno 225 or 320

Exynos Samsung Single or Dual-core ARM
Cortex-A8

1−1.5GHz PowerVR SGX540 or ARM
MALI-400

Exynos 4 Samsung Quad-core Cortex-A9 1.4−1.6GHz ARM MALI-400 MP4

Exynos 5 Samsung Quad-core Cortex-A15 2.0GHz ARM MALI-T658

Atom Intel Single core x86 1.6−2GHz PowerVR SGX540

MT6575 Mediatek Cortex-A9 1GHz PowerVR Series5 SGX

MT6577 Mediatek Dual-core Cortex-A9 1GHz PowerVR Series5 SGX
a No additional details about the origin of the GPU engine are provided in Freescale’s data sheet.
b This is specific to Qualcomm and, according to Wikipedia, is similar to an ARM Cortex-A8.
c This is specific to Qualcomm and, according to Wikipedia, is similar to an ARM Cortex-A15.

The Linux kernel has supported symmetric multiprocessing for quite some time, so you
won’t have trouble with its handling of a multicore SoC. The Android stack has only
recently started being run on multicore processors, and while it implicitly benefits from
Linux’s multicore capabilities, the Android stack itself doesn’t, at the time of this writing,
contain any specific multicore optimizations. Hence, if you have code that must run on
multiple CPUs simultaneously, you will need to manually make sure that each thread
has its CPU affinity properly set.

What’s in a System-on-Chip (SoC)? | 163

www.it-ebooks.info

http://www.it-ebooks.info/

Traditionally, Android is used with ARM-based SoCs, as is well reflected by the table
above. But as we saw earlier, it has been made to run on a variety of other architectures
supported by Linux, such as x86, MIPS, SuperH, and PowerPC. In fact, a number of
devices from the likes of Motorola and Lenovo have already shipped with Intel-based
chips. Google and Intel collaborated, in fact, to bring x86 support into the upstream
AOSP. Most of the tools, documentation, and examples found on the Net remain, how‐
ever, ARM-centric for the time being.

Another important component in the SoC is the GPU, which is responsible for accel‐
erating the rendering of graphics to the device’s display. While most CPU cores for
Android SoCs are ARM-based, there’s no standard GPU used by all SoC manufacturers.
Instead, each manufacturer uses a different GPU, as you can see in Table 5-1. As men‐
tioned earlier, these are clocked at several hundred megahertz (300 to 500) even if the
CPU core(s) they’re packaged with on the same SoC are clocked at speeds close to or
above 1GHz.

Apart from the CPU and the GPU, the role of most of the rest of the components in the
SoC can be more modestly described:
RAM controller

Interfaces with the onboard RAM.

DMA
Handles the automated transfers of data between the RAM and memory-mapped
hardware.

USB controller
Manages the hardware side of the device’s USB connections.

DSP
Provides hardware acceleration for some signal processing, such as JPEG encoding.

Display
Enables the SoC to drive various display types.

Camera
Allows the SoC to interface with a camera.

Storage
Manages I/O with the various types of storage that can be used with the SoC.

Debug
Enables the SoC to be connected to hardware debugging tools through various
mechanisms, such as JTAG.

The SoC also likely contains some cryptographic and security functionality. This may
consist simply of hardware acceleration for common cryptographic functions. It may
also include security mechanisms made available by the SoC manufacturer to device

164 | Chapter 5: Hardware Primer

www.it-ebooks.info

http://www.it-ebooks.info/

manufacturers for locking the device and for preventing unauthorized code from run‐
ning. Such mechanisms are often used to implement digital rights management (DRM)
and can lead to frustration by people wanting to reprogram their devices. Unfortunately,
however, consumers aren’t the SoC manufacturers’ direct customers, and the ethical
issues surrounding the use of such technology far exceed our present scope.

Finally, the SoC most likely has capabilities to connect to additional external ICs using
a variety of different buses and interfaces. This is how, for instance, most of the com‐
ponents described in the previous section are connected to the SoC through wiring on
the PCB. Such buses and interfaces may include I2C, SPI, UART, and GPIO, but may
include other mechanisms as well.

The specific capabilities and makeup of each SoC are typically documented by its man‐
ufacturer in data sheets it provides to device manufacturers, as well as OS and device-
driver developers. Often, SoC manufacturers will provide a set of drivers for the most
important components found in the SoC, such as the GPU, for instance. Most SoC
vendors tend to, in fact, go much further and provide AOSP trees that are known to
work “out of the box” on their own evaluation boards.

Memory Layout and Mapping
To be of any use, the hardware components we just saw must be accessible in some way
from software. In general, this is done through device drivers in the Linux kernel. Ap‐
plications then use the standard interfaces exposed by those drivers to, in effect, talk to
the underlying hardware. Figure 5-3 illustrates how this works.

One of the buses connected to any CPU is an address bus. This bus is connected so as
to allow the CPU access to the components attached to it using separate address ranges.
In fact, most components occupy several, often consecutive, address regions. The ad‐
dresses accessible by the CPU through its address bus are typically referred to as phys‐
ical addresses, meaning they represent real, physical components connected to the CPU.
When the CPU refers to any of these addresses, there are actual electrical signals being
applied to the address bus on the printed circuit board (PCB) by the CPU, allowing it
to designate a specific IC component.

Memory Layout and Mapping | 165

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-3. Virtual versus physical address spaces

The actual location of each of the components in the physical adress space is typically
known as the physical address map and is determined by the device’s designers as they
route the connections from the SoC to the various components included on the PCB.

166 | Chapter 5: Hardware Primer

www.it-ebooks.info

http://www.it-ebooks.info/

Two separate boards having identical components can have totally different physical
memory maps. What’s important is that each device driver know the location of the
component or components it needs to talk to. Sometimes, the component the driver
communicates with is actually a bus itself. In that case, that component acts as a bridge
for additional components connected to it using its own specific bus. Such is the case
for components connected to the SoC through I2C, for instance.

If you’d like to look at the physical memory map that your kernel sees
at runtime, all you need to do is go to a command line and type cat /
proc/iomem. That map might not contain all peripherals on your actual
board, but it will contain those seen by the kernel. Some ICs or periph‐
erals might not be listed because no driver registered with the kernel
recognizes or deals with them.

The mapping between applications and devices works because the CPU manages two
entirely separate address spaces through its memory management unit (MMU). Using
its MMU, the CPU can present a virtual address space to applications running on it and
still use a physical address space to communicate with components connected to it
through its address bus.

One of the components residing in the physical address space is the system RAM. As
you can see in Figure 5-3, the RAM location in the physical address space can vary
greatly. Obviously, RAM is used to hold all active software code and data. However, this
code and data is rarely addressed using references to its actual physical location. Instead,
the OS collaborates with the MMU to implement a virtual address space wherein each
process gets a similar view of the world. Virtual addresses eventually map to actual
physical addresses, but the conversion is automatically handled by the MMU based on
OS-maintained page tables.

It’s beyond the scope of this book to explain paging and MMUs’ operation in full, but
just remember that the address ranges you see in your applications have nothing to do
with the actual addresses being put by the CPU on its address bus to access your code
and data. Figure 5-3 illustrates the virtual address space where Android processes live
—bear in mind that the layout is not proportional. Some objects may be larger or smaller
than they appear. The kernel is always seen as occupying an address range starting at
0xC000 0000 as its low address. Android apps, on the other hand, occupy the entire
address space below that address.

The actual application “text,” that is, the application’s code, sits very near the beginning
of the virtual address space. It’s followed by mapped memory regions. These are virtual
addresses that point either to RAM shared with other processes for interprocess com‐
munication, or physical address ranges mapped into the process’s address space using
the corresponding driver’s mmap() function.

Memory Layout and Mapping | 167

www.it-ebooks.info

http://www.it-ebooks.info/

The mapping of physical address ranges into a process’s address space allows that process
to directly drive an IC component or another connected device, instead of having to go
through the kernel and the device’s driver for every operation. This is especially useful
for performance-intensive operations such as graphics rendering. However, it’s also an
effective means of exporting critical device-driver intelligence outside the kernel and,
therefore, subtracting it from the kernel’s GPL requirements. In fact, it’s a very effective
way of implementing key driver functionality in Android HAL components.

Finally, libraries start at 0x8000 0000, and the process’s stack grows downward from
the process’s topmost address. Except where your software uses memory-mapped reg‐
isters and regions to operate on hardware, the path for calls affecting hardware is usually
as follows:

1. Your code calls on a function that interacts with a file descriptor associated with
hardware. The immediate code called is actually in one of the system libraries map‐
ped into your process’s address space. This function typically has more “sugar-
coating” than the raw kernel system call.

2. The library does some processing and eventually calls a matching system call.
3. The system call handler then does further processing and invokes various functions

inside the kernel.
4. Eventually some part of the kernel invokes the device driver matching the device

associated with the file descriptor held by your application.
5. The device driver interacts with the hardware using whichever method is applicable.

The result of this is of course hardware dependent. In some cases, the device driver
may be able to read back a status and return it immediately. In other cases, the
hardware feedback may occur only at a much later time. In other cases still, there
may be no expected feedback.

6. Assuming the hardware does provide some feedback to the driver or generates an
interrupt in response to the earlier operation, the call path will start to return from
where it came.

7. The call path returns back from the driver to whatever invoked it.
8. The call path returns back to the system call handler.
9. The call path returns back to the system library.

10. The call path returns back to your code.

The only part of the preceding call chain that might involve physical addresses is where
the device driver code communicates with its designated hardware. The rest of the calls
being made and data being exchanged all happen in virtual address space.

168 | Chapter 5: Hardware Primer

www.it-ebooks.info

http://www.it-ebooks.info/

Development Setup
As soon as you have some prototype hardware, and continuing throughout board
bringup and development, it’s very practical to have your target hooked up to your
development workstation. Figure 5-4 illustrates a generic host-target debug setup. Your
specific hookup will likely differ, but this setup represents the ideal.

Figure 5-4. Host-target debug setup

Here, the connections between the host and the target can serve a variety of sometimes
overlapping purposes. By connecting the target’s power to a software-controlled power
source managed by the host, the power-on/power-off of the board can be scripted on
the host and hence be used to automate the testing of various software versions on the
board. There are several power strips on the market that allow you to set up something
like this.

The classic way that a target is connected to its host is through a serial connection,
typically RS-232. This usually allows you to interact with the board’s bootloader, upload
and download small files, and generally interact with the target when nothing else works.
Obviously this connection is relatively slow, and its purpose is really for basic interac‐
tion; transferring large amounts of data is best suited for something like Ethernet.

The Ethernet connection will allow the host to provide a wide range of services to the
target, as illustrated in Figure 5-5. To ease the iterative debug process, for instance, it’s
best to have the target use DHCP to retrieve its IP configuration, use TFTP to load its
kernel images, and mount its root filesystem through NFS. If you do that, then any
change you make to your project on the host will be deployed to the target via reboot,
at worst. At best, you just update a file in the NFS-mounted root filesystem, and all you
need to do is restart a command to run its new version. In all cases, you save yourself
the trouble of having to manually reprogram the target’s storage every time you make
a change.

Development Setup | 169

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-5. Development boot setup

Finally, and especially in the case of Android, USB can be very useful. Indeed, with
Android you can rely on USB to connect to the target using ADB very much as an app
developer would connect to a consumer phone or tablet for app development. All the
typical ADB commands would then be available to you, including shelling into the
target, forwarding ports, updating filesystems, etc. Whereas you can configure ADB to
run over IP, and therefore over Ethernet, having it available through USB is great because
it works “out of the box.”

Setting up ADB over IP is actually relatively simple: It’s just that you
have fewer command-line parameters to deal with if it’s over USB. Most
importantly, USB is the case most widely covered by documentation
you’ll find on the Net. We’ll cover this topic in greater detail in the next
chapter.

Your specific setup will most likely contain its own quirks, but the configuration shown
here should give you a general idea of what you want to aim for. Serial support is usually
provided by the bootloader and the kernel. Unless you’re bringing up a board based on
a whole new CPU, you should already have access to serial-port communication. Ether‐
net support will require a proper driver for the Ethernet chip used on your board. This
may require some work on your part. Finally, USB support will depend on whether the
USB hardware on your target is properly supported by the kernel. If you’re using a
common SoC, this shouldn’t be an issue. If you need help setting up a DHCP server,
TFTP, or NFS for servicing your target, have a look at O’Reilly’s Building Embedded
Linux Systems, 2nd ed (2008).

170 | Chapter 5: Hardware Primer

www.it-ebooks.info

http://shop.oreilly.com/product/9780596529680.do
http://shop.oreilly.com/product/9780596529680.do
http://www.it-ebooks.info/

Evaluation Boards
If you’re still early in your development process or are simply evaluating Android, you’ll
likely want to rely on an evaluation board. Here are some factors that you may want to
consider when selecting one:
SoC

Does it rely on the SoC you’re going to use in your final design? Is the SoC of the
same family? Or is it a previous iteration of the yet-to-be-released SoC you plan on
using from a given manufacturer?

Community
Is there a community around the board, or is the manufacturer the only source of
support? How active is this community? Is it built around a single board or a family
of boards?

Cost
What’s the up-front cost of the board, and what’s included for that price? How much
do add-ons or extensions cost? What’s the price difference between the low-end
option and the high-end option, and what are the feature differences?

Features
What functionality is included/exposed by the board? SoCs can increasingly sup‐
port a wide range of functionality. Yet, the more SoC features the board makes
available, the more expensive it tends to be. So does the board you’re looking at
expose the features you need?

Expandability
The basic features provided by the board may suffice for a certain percentage of
what you’re trying to accomplish, but does the board allow you to attach additional
hardware so you can emulate the final functionality you’re aiming for?

Availability
How easy is it to get your hands on the board? Some boards look very nice on paper
but have fluctuating supplies.

Licensing
Can you use the board as is for end products? Some manufacturers forbid you from
doing that. Do you have access to the bill of materials (BOM) and the schematics?
If you want to build a board based on the eval board, these will be critical.

Catalog parts
Is the board using catalog parts? If the board relies on noncatalog parts, then you’ll
need to go to their manufacturer to get your hands on them. Usually, this situation
occurs when the manufacturer wants to sell components only to very-high-volume
buyers, making such parts beyond the reach of people doing small projects.

Evaluation Boards | 171

www.it-ebooks.info

http://www.it-ebooks.info/

Third-party parts
Sometimes SoC vendors include third-party parts in their boards. Make sure you
apply a similar set of criteria to those components. Keep in mind that, should you
use third-party components in your design, you’ll be dependent on those suppliers
for almost exactly the same kind of support you’d expect from the SoC vendor.

Software support
How well is Android supported on the board? And by whom? The manufacturer?
A third party? Which versions of Android are supported? What’s the long-term
commitment behind such support?

You’ll also most certainly have more criteria for your own project. If you’re building
your own hardware, however, your starting point will usually be the SoC, as this is a
critical decision point involving quite a few stakeholders in your organization, both on
the hardware and software sides. And then, your next step will be to go to that SoC’s
manufacturer site to check the eval board(s) it recommends for that SoC. If you’re
looking only to get your hands on a decent board that will allow you to experiment with
Android, you’re likely going to hit your favorite search engine for hours of fun looking
at the various evaluation boards out there. Either way, have a look at Table 5-2 for some
of the more prominent eval boards as of early 2013.

Table 5-2. Evaluation boards lineup
Board SoC Speed RAM I/O Costa

BeagleBone Sitara AM3358 500MHz (on
USB) /
720MHz (on
DC)

256MB USB OTG, USB host, Ethernet, onboard serial,
onboard JTAG, expansion headers, microSD

$89

BeagleBoard xM Davinci DM3730 1GHz 512MB USB OTG, USB host, Ethernet, serial, JTAG, expansion
headers, microSD, DVI-D, LCD header, S-Video,
camera header, stereo in/out

$149

iMX53 Quick Start
Board

i.MX53 1GHz 1GB USB OTG, USB host, Ethernet, serial, JTAG, expansion
headers, SD, microSD, SATA, VGA, LCD header, stereo
in/out

$149

PandaBoard ES OMAP4 dual-core 1.2GHz 1GB USB OTG, USB host, Ethernet, WLAN, Bluetooth,
serial, JTAG, expansion headers, SD, HDMI, DVI, LCD
header, camera header, stereo in/out

$182

AM335x Starter
Kit

Sitara AM3358 720MHz 256MB USB OTG, USB host, Ethernet, WLAN, Bluetooth,
onboard serial, onboard JTAG, expansion headers,
microSD, capacitive-touch LCD panel, accelerometer,
stereo out

$199

Nitrogen6X i.MX6 quad-core 1GHz 1GB USB OTG, USB host, serial, JTAG, SATA, SD, CAN, LCD
headers

$199

OrigenBoard Exynos 4210 dual-
core

1.2GHz 1GB USB OTG, USB host, WLAN, Bluetooth, serial, JTAG,
SD, HDMI, LCD header, camera header, stereo in/out

$199

172 | Chapter 5: Hardware Primer

www.it-ebooks.info

http://www.it-ebooks.info/

Board SoC Speed RAM I/O Costa

Origen 4 Quad Exynos 4 quad-
core

1.4GHz 1GB USB OTG, USB host, Ethernet, SD, JTAG, serial, HDMI,
onboard LCD header, audio

$199

DragonBoard
APQ8060A

Snapdragon dual-
core

1.2GHz 1GB USB OTG, USB host, Ethernet, WLAN, Bluetooth, GPS,
FM radio, accelerometer, gyroscope, compass,
magnetometer, pressure sensor, eMMC, SATA HDMI,
camera, stereo out, serial, capacitive-touch LCD,
JTAG

$499

SABRE i.MX53 1GHz 1GB USB OTG, USB host, Ethernet, WLAN, Bluetooth, GPS,
ZigBee, accelerometer, light sensor, serial, JTAG,
eMMC, SD, SATA, NOR flash, VGA, HDMI, LCD panel,
camera, stereo in/out

$999

Snapdragon MDP Snapdragon S4
dual-core

1.5GHz 1GB USB OTG, WLAN, Bluetooth, GPS, accelerometer,
gyroscope, compass, proximity sensor, temperature
sensor, SD, HDMI, LCD panel, camera, stereo out

$999

a Most common price at the time of this writing.

Save for the last two entries, all the eval boards listed in Table 5-2 look exactly like what
their names imply: a PCB with chips and bare connectors on it. Few of the configurations
I listed in Table 5-2 include an LCD panel, though most of these boards can have an
LCD touch-panel added to them for anywhere between $100 and $200. The last two
eval boards listed actually come in tablet and phone form factors, respectively, with the
expected housing and mechanical specifications. If you’re trying to build a demo of a
final product to show to an end customer, those two systems might be more presentable
than a board with wires protruding here and there. They are, as you might have noticed,
priced accordingly.

Evaluation Boards | 173

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

Native User-Space

By this point, you’ve either already gotten your hands dirty trying a few things here and
there or you’re very eager to actually play with a live Android system. As with any
embedded system you are bringing up, your typical goal would be to get to a minimally
functional system and then start adding support for more and more hardware and
functionality until your requirements are met.

Obviously, to get a minimally functional Android system, you’ll first need to bring the
kernel up on your board. As I mentioned earlier, the best way to get yourself an Android-
compatible kernel is to talk to your SoC vendor; kernel porting and board bringup being
somewhat outside the scope of this book. However, once you’ve got yourself a minimally
functional kernel, the first Android component you’ll have to deal with is its native user-
space.

As described in Chapter 2, this foundation serves as the hosting environment for all the
upper layers of the Android stack, including the Dalvik virtual machine and the services
and apps it runs. This is also where a part of Android’s hardware support is implemented.
Now is therefore a good time to take a closer look at Android’s native user environment.
If nothing else, it’s sufficiently different from what is found in most classic embedded
Linux systems to warrant a separate discussion.

Filesystem
In Chapter 4, we discussed how the build system operates and what it generates. Specif‐
ically, Table 4-3 provided a detailed list of the images typically created by the build
system. Conversely, Figure 6-1 illustrates how these images relate to one another at
runtime. Save for a few exceptions that we’ll cover later, this filesystem layout is essen‐
tially the same in 2.3/Gingerbread and 4.2/Jelly Bean.

To understand how we go from the images generated by the build system to the runtime
configuration shown in Figure 6-1, you need to go back to the system startup

175

www.it-ebooks.info

http://www.it-ebooks.info/

explanation in Chapter 2 and, more specifically, you need to refer to the boot process
illustrated in Figure 2-6. In essence, the kernel mounts the RAM disk image generated
by the build system as its root filesystem and launches the init process found in that
image. That init process’s configuration files will, as we’ll see later in this chapter, cause
a number of additional images and virtual filesystems to be mounted onto existing
directory entries in the root filesystem.

Figure 6-1. Android root filesystem

One of the first questions you might ask is, “Why so many filesystems?” Indeed, why
not just a single filesystem image to store everything? The answer lies in the different
purposes each image has, along with differences in the nature of the storage devices or
technologies being used. The RAM disk image, for example, is meant to be as small as
possible, and its sole purpose is to provide the initial skeleton required to get the system
going. It’s typically stored as a compressed image on some media prior to being loaded
into RAM by the kernel and then mounted as a read-only root filesystem.

/cache, /data, and /system, on the other hand, are typically mounted from separate par‐
titions on actual storage media. Usually /cache and /data are mounted as read-write,
while /system is mounted as read-only.

176 | Chapter 6: Native User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

Using a Single Filesystem
There’s nothing preventing you from using a single filesystem for all of Android’s build
output instead of using separate storage partitions. Texas Instruments’ RowBoat distri‐
bution, for instance, does exactly that. It generates a single root filesystem image, which
is programmed on the target’s storage device for use as is. In the case of the BeagleBone
or BeagleBoard, for example, the root filesystem in its entirety is programmed into a
single partition of the microSD card used for booting and as the device’s main storage
device.

By consolidating on a single filesystem, however, you’re assuming that you can update
the entirety of the filesystem in one fell swoop. In sum, it’ll be very difficult to create a
fail-safe update procedure for your system. In the case of RowBoat’s support for the
Beagles, this might not be an issue because they are development boards, but in your
actual product that has to go in the field, it might well turn out to be a problem.

In Android versions 2.2 and prior, all three directories would typically be mounted from
YAFFS2-formatted NAND flash partitions. Since handset manufacturers have slowly
been moving toward eMMC instead of NAND flash, YAFFS2 was replaced by ext4 in
Google’s Android 2.3 lead device, the Samsung Nexus S. Since then, it’s been assumed
that all Android-based handsets should be using ext4 instead of YAFFS2. Nothing,
however, precludes you from using another filesystem type altogether. You just need to
modify the build system’s makefiles to generate those images and update the parameters
used with the mount commands as part of init’s configuration files, as we’ll see shortly.

eMMC versus NOR or NAND Flash
As explained in the book Building Embedded Linux Systems, 2nd ed., Linux’s MTD layer
is used to manage, manipulate, and access flash devices in Linux; this includes NOR and
NAND flash. Various filesystems are then used on top of the MTD layer, such as JFFS2,
UBIFS, or YAFFS2, to make the flash device or partition accessible as part of Linux’s
virtual filesystem switch (VFS.) Those flash filesystems typically implement wear lev‐
eling and bad-block management to properly handle the underlying flash devices.

An eMMC device, as explained in Chapter 5, appears as a traditional block device.
Essentially, it contains a microcontroller and some RAM that allow it to do the required
wear leveling and bad-block management transparently. Therefore, the OS can use a
regular disk filesystem such as ext4. While the decision to move toward eMMC is,
according to Android developer Brian Swetland, motivated by reduced pin-count on
the PCB—and therefore overall cost—there are some additional side benefits to using
this type of device.

Filesystem | 177

www.it-ebooks.info

http://lwn.net/Articles/440826/
http://www.it-ebooks.info/

First, it allows you to use all the traditional commands and methods you’re used to with
a regular Linux filesystem. The MTD subsystem, while powerful, has always required
some getting used to before one could effectively use it. Also, flash filesystems tend to
be designed with single-processor systems in mind, while disk filesystems in Linux have
had to contend with multiprocessor systems for quite some time. Hence, they’re likely
a better fit for the coming wave of multicore Android devices.

The SD card always appears as a block device and typically has a VFAT filesystem on it.
This should be expected because the user needs to be able to remove it from the Android
device and plug it into his regular computer, whatever OS it may be run‐
ning. /proc, /sys, and /acct are mounted using procfs, sysfs, and cgroupfs, respectively.
While /proc and /sys are mounted at the same location as in traditional Linux-based
systems, cgroups were traditionally mounted as /cgroup in Linux but are mounted as /
acct in Android. Note also that /dev is mounted as tmpfs. This means its content is
created on the fly and does not reside on any permanent storage. That’s fine, because
Android relies on Linux’s udev mechanism to dynamically create entries in /dev as
devices are plugged in and/or drivers are loaded or initialized.

Procfs, sysfs, tmpfs, and cgroup are all virtual filesystems maintained by the currently
running kernel in the system. They don’t have any corresponding storage and are, in
fact, data structures maintained inside the kernel. Procfs is the traditional way the kernel
exports information about itself to user-space. Typically, entries in procfs are seen as
text files, or directories containing text files, which can be dumped to the command line
for extracting a given piece of information from the kernel. If you’re looking for the type
of CPU your system is running, for example, you can dump the contents of the /proc/
cpuinfo file.

As the kernel matured and had growing needs, it was eventually agreed that procfs was
not necessarily the right mechanism for all interfaces between the kernel and user-space.
Enter sysfs, which is very heavily tied to the kernel’s device and hardware management.
Entries in sysfs can, for instance, be used to get detailed information regarding periph‐
erals, or toggle bits controlling the behavior of certain drivers directly from user-space.
Many of Android’s power-management features, for example, are controlled via entries
in the /sys/power/ directory.

178 | Chapter 6: Native User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

Tmpfs allows you to create a virtual RAM-only filesystem for storing temporary files.
As long as power is applied to the RAM, the kernel will allow you to read and write
those files. On reboot, however, it’s all gone. Cgroupfs is a relatively recent addition to
the kernel for managing the control group functionality added in Linux 2.6.24. In sum,
cgroups allow you to group certain processes and their children and dictate resource
limits and priorities onto those groups. Android uses cgroups to prioritize foreground
tasks.

The Root Directory
As we discussed in Chapter 2, the classic structure of Linux root filesystems is specified
in the Filesystem Hierarchy Standard (FHS). Android, however, doesn’t abide by the
FHS, but relies heavily instead on the /system and /data directories for hosting most of
its key functionality.

Android’s root directory is mounted from the ramdisk.img generated by the AOSP’s
build system. Typically, ramdisk.img will be stored along with the kernel in the device’s
main storage device and loaded by the bootloader at system startup. Table 6-1 details
the contents of the root directory once mounted.

Table 6-1. Android’s root directory
Entry Type Description

/acct dir cgroup mount-point.

/cache dir Temporary location for downloads in progress and other nonessential data.

/d symlink Points to /sys/kernel/debug, the typical mount location for debugfs.a

/data dir The mount-point for the data partition. Usually, the contents of userda
ta.img are mounted here.

/dev dir Mounted on tmpfs and contains the device nodes used by Android.

/etc symlink Points to /system/etc.

/mnt dir Temporary mount-point.

/proc dir The mount-point for procfs.

/root dir In traditional Linux systems, the root user’s home directory. It’s generally
empty in Android.

/sbin dir In Linux, this would hold binaries essential to the system administrator. In
Android, it contains only ueventd and adbd.

/sdcard dir The mount-point for the SD card.

/sys dir The mount-point for sysfs.

/system dir The mount-point for the system partition. system.img is mounted to this
location.

/vendor symlink Generally a symbolic link to /system/vendor. Not all devices actually have
a /system/vendor directory.

Filesystem | 179

www.it-ebooks.info

http://www.pathname.com/fhs/
http://www.it-ebooks.info/

Entry Type Description

/init file The actual init binary executed by the kernel at the end of its initialization.

/init.rc file init’s main configuration file.

/init.<device_name>.rc file The board-specific configuration file for init.

/ueventd.rc file ueventd’s main configuration file.

/ueventd.<de
vice_name>.rc

file The board-specific configuration file for ueventd.

/default.prop file The default global properties to be set for this system. These are
automatically loaded by init at startup.

a Debugfs is meant as a very flexible, RAM-based filesystem for exporting debugging information from kernel-space to user-space.
It’s not meant for use in production systems.

As part of 4.2/Jelly Bean, you’ll also find some more entries in the root filesystem as
listed in Table 6-2.

Table 6-2. Additions to Android’s root directory in 4.2/Jelly Bean
Entry Type Description

/config dir mount-point for configfs.a

/storage dir Starting with 4.1/Jelly Bean, this directory is used to mount external storage. /storage/sdcard0, for
instance, is typically the fake “external” storageb and /storage/sdcard1 is a real SD card.

/charger file Native, standalone full-screen application that displays the battery’s charge status.

/res dir Resources for the charger application.
a Have at http://lwn.net/Articles/148973/ for more information on configfs.
b “Fake” in the sense that it’s essentially a FUSE-mounted “internal” directory made to appear as an external storage device.

/system
As mentioned earlier, /system contains the immutable components generated by the
AOSP build system. To illustrate this further, Figure 6-2 takes the Android architecture
diagram presented in Chapter 2 and shows where each part of the stack is found in the
filesystem.

180 | Chapter 6: Native User-Space

www.it-ebooks.info

http://lwn.net/Articles/148973/
http://www.it-ebooks.info/

Figure 6-2. Filesystem location of key Android components

As you can see, most of the components are found somewhere within /system once
system.img is mounted. Table 6-3 further describes each entry in detail. You can also
contrast Figure 6-2 with Figure 3-2 to see where each architecture component is located
in the AOSP sources versus the final filesystem.

Table 6-3. /system directory contents
Entry Type Description

/app dir The stock apps built as part of the AOSP, such as the browser, email app, calendar, etc. All modules built
with BUILD_PACKAGE are here.

/bin dir All native binaries and daemons built as part of the AOSP. All modules built with BUILD_EXE
CUTABLE are here. The only exception is adbd, which has the LOCAL_MODULE_PATH set to /sbin
and is therefore installed there instead.

/etc dir Contains configuration files used by various daemons and utilities, including possibly an init.<de
vice_name>.sh script that would be launched by one of init’s configuration files at startup.

/fonts dir The fonts used by Android.

/framework dir Framework .jar files.

/lib dir The system’s native libraries. Essentially this means any module built using BUILD_SHARED_LI
BRARY. It’s important to note again that Android doesn’t use /lib at all, only this lib directory
within /system.

Filesystem | 181

www.it-ebooks.info

http://www.it-ebooks.info/

Entry Type Description

/modules dir An optional directory for storing the dynamically loadable kernel modules required to run the system.

/usr dir A miniature /usr akin to the classic /usr directory found in traditional Linux systems.

/xbin dir “Extra” binaries generated by some of the packages that are built within the AOSP but aren’t essential
to the system’s operation. This includes things like strace, ssh, and sqlite3.

/build.prop file A set of properties generated during the build process of the AOSP. They are loaded by init at startup.

In 4.2/Jelly Bean, you’ll also find the entries in Table 6-4 in /system.

Table 6-4. New /system directory entries in 4.2/Jelly Bean
Entry Type Description

/media dir Files relating to the boot animation and other media.

/tts dir Files related to the Text-to-Speech engine.

Generally /system is mounted read-only because it’s called on to change only if the entire
Android OS is updated to a newer version. One benefit is that some OTA update scripts
do binary patching, and given that this partition is assumed to not have changed since
it was shipped, the application of the deltas is guaranteed to be clean.

/data
As discussed earlier, /data contains all data and apps that can change over time. For
example, all the data stored by apps you download from Google Play is found here. The
userdata.img image generated by the AOSP’s build system is mostly empty, so this di‐
rectory starts off containing little to nothing. As the system starts getting used, however,
the content of this directory is naturally populated, and it becomes important to preserve
it across reboots. This is why /data is typically mounted in read-write mode from per‐
sistent storage. Table 6-5 shows the contents.

Table 6-5. /data directory contents
Entry Type Description

/anr dir ANR traces.

/app dir Default install location for apps.

/app-private dir Install location for apps with forward locking.a This mechanism has been replaced with an API
allowing app developers to check if the running app is a legitimate copy obtained from Google Play.
Have a look at the Application Licensing section of the app developers guide for more information on
this topic.

/backup dir For use by the BackupManager system service.

/dalvik-cache dir Holds the cached JIT’edb versions of all dex files.

/data dir Contains one subdirectory for each app installed on the system. In effect, this is where each app’s
“home” directory is located.

182 | Chapter 6: Native User-Space

www.it-ebooks.info

https://developer.android.com/google/play/licensing/index.html
http://www.it-ebooks.info/

Entry Type Description

/dontpanic dir Last panic output (console and threads)—for use by dumpstate.

/local dir Shell-writable directory. In other words, any user who can shell into the device, using adb shell, for
example, can copy anything, including binaries, into this directory and it will be preserved across
reboots.

/misc dir Miscellaneous data such as for WiFi, Bluetooth, or VPN.

/property dir Persistent system properties.

/secure dir Used to store user account information if the device uses an encrypted filesystem.

/system dir Systemwide data, such as the accounts database and the list of installed packages.

/tombstones dir Whenever a native binary crashes, a file whose name is tombstone_ followed by a sequence
number is created here with information about the crash.

a When an ISV publishes an app to Google Play, he can set the Copy Protection in the Publishing Options to On or Off. By setting it
to Off, the app’s .apk can be copied off the device, while it can’t if it’s set to On. In essence, On means the app is installed in /data/
app-private and Off means it’s installed in /data/app.
b Remember that Dalvik has a Just-in-Time compiler that converts the byte-code found in .dex files to native CPU instructions. This
conversion is done once and cached for all future uses.

In 4.2/Jelly Bean, you’ll also find the entries described in Table 6-6.

Table 6-6. New /data directory entries in 4.2/Jelly Bean
Entry Type Description

/app-asec dir Encrypted apps.

/drm dir DRM encryption data. Forward-locking control files.

/radio dir Radio firmware.

/resource-cache dir App resource cache.

/user dir User specific data for multiuser systems.

Multiuser support

One of the most important features added to 4.2/Jelly Bean is multiuser support. In fact,
some have argued that this addition was a watershed moment, opening Android to new
use cases. Though available only in tablet mode, it allows multiple users to share the
same device in a coherent fashion. Specifically, it means every user can utilize the device
by logging in separately and can have her own set of account credentials and data for
each application.

To achieve this, the AOSP’s data-storage mechanism has been slightly modified. For
instance, /data/data is now the directory containing the app data for the device’s owner

Filesystem | 183

www.it-ebooks.info

http://www.it-ebooks.info/

1. The emulator doesn’t support multiple users by default. A few hacks must be made to get it to add a fake user.

(i.e., “administrator”). All other users have their data stored in /data/user/<user_id>
instead. Here’s the content of /data/user in an emulator running 4.2/Jelly Bean:1

root@android:/ # ls -l /data/user/
lrwxrwxrwx root root 2012-11-30 20:46 0 -> /data/data/
drwxrwx--x system system 2012-12-04 23:38 10
root@android:/ # ls -l /data/user/0/
drwxr-x--x u0_a27 u0_a27 2012-11-30 20:46 com.android.backupconfirm
drwxr-x--x bluetooth bluetooth 2012-11-30 20:46 com.android.bluetooth
drwxr-x--x u0_a17 u0_a17 2012-12-14 18:01 com.android.browser
drwxr-x--x u0_a43 u0_a43 2012-11-30 20:46 com.android.calculator2
drwxr-x--x u0_a20 u0_a20 2012-11-30 20:47 com.android.calendar
drwxr-x--x u0_a33 u0_a33 2012-11-30 20:46 com.android.certinstaller
drwxr-x--x u0_a0 u0_a0 2012-11-30 20:47 com.android.contacts
drwxr-x--x u0_a25 u0_a25 2012-11-30 20:46 com.android.defcontainer
drwxr-x--x u0_a6 u0_a6 2012-11-30 20:47 com.android.deskclock
...
root@android:/ # ls -l /data/user/10/
drwxr-x--x u10_system u10_system 2012-12-04 23:38 android
drwxr-x--x u10_a27 u10_a27 2012-12-04 23:38 com.android.backupconfirm
drwxr-x--x u10_bluetooth u10_bluetooth2012-12-04 23:38 com.android.bluetooth
drwxr-x--x u10_a17 u10_a17 2012-12-04 23:38 com.android.browser
drwxr-x--x u10_a43 u10_a43 2012-12-04 23:38 com.android.calculator2
drwxr-x--x u10_a20 u10_a20 2012-12-04 23:38 com.android.calendar
drwxr-x--x u10_a33 u10_a33 2012-12-04 23:38 com.android.certinstaller
drwxr-x--x u10_a0 u10_a0 2012-12-04 23:38 com.android.contacts
drwxr-x--x u10_a25 u10_a25 2012-12-04 23:38 com.android.defcontainer
drwxr-x--x u10_a6 u10_a6 2012-12-04 23:38 com.android.deskclock
...

Similarly, there are now per-user account credentials for each of the Internet accounts
that may be tied to a given user. Prior to 4.2/Jelly Bean, there was a single /data/system/
accounts.db to hold all accounts. Now there is one such file for each user:

root@android:/ # ls /data/system/users/ -l
drwx------ system system 2013-01-19 01:03 0
-rw------- system system 155 2012-11-30 20:46 0.xml
drwx------ system system 2013-01-19 01:03 10
-rw------- system system 166 2012-12-04 23:38 10.xml
-rw------- system system 141 2013-01-19 01:03 userlist.xml
root@android:/ # ls /data/system/users/0 -l
-rw-rw---- system system 57344 2012-11-30 20:47 accounts.db
-rw------- system system 8720 2012-11-30 20:47 accounts.db-journal
-rw------- system system 534 2013-01-19 01:03 appwidgets.xml
-rw-rw---- system system 549 2013-01-19 01:03 package-restrictions.xml
-rw------- system system 97 2013-01-19 01:03 wallpaper_info.xml
root@android:/ # ls /data/system/users/10 -l
-rw-rw---- system system 57344 2012-12-04 23:39 accounts.db

184 | Chapter 6: Native User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

-rw------- system system 8720 2012-12-04 23:39 accounts.db-journal
-rw-rw---- system system 129 2013-01-19 01:03 package-restrictions.xml

SD Card
As discussed earlier, consumer devices typically have a microSD card that the user can
remove and plug into her computer. The content of this SD card is not critical to the
system’s operation. In fact, you can relatively safely wipe it out without adverse effects.
If a real user is using the device, however, you’ll at least want to understand what’s on
it, because some apps store their information on the SD card, and it might matter to the
user. Table 6-7 details some of what you might find in the /sdcard directory.

Table 6-7. Sample /sdcard directory contents
Entry Type Description

/Alarm dir Downloaded audio files that can be played as an alarm.

/Android dir Contains apps’ “External” data and media directories. The former can be used for storing noncritical
files and caches, while the latter is for app-specific media.

/DCIM dir Pictures and videos taken by the Camera app.

/Download dir Files downloaded from the web.

/Movies dir Download location for movies.

/Music dir The user’s music files.

/Notifications dir Downloaded audio files that can be selected by the user for playing when notifications occur.

/Pictures dir Downloaded pictures available to the user.

/Podcasts dir The user’s podcasts.

/Ringtones dir The downloaded ringtones the user should be able to choose from.

Because /sdcard is world-writable, the specific contents will depend on the apps running
on the device and, of course, what the user decides to manually copy there. Again, just
as a reminder, Android’s API distinguishes between “internal” and “external” storage,
and the SD card is the latter. Also, note that some upgrade procedures use the SD card
as the location where the update image is stored during the upgrade.

The Build System and the Filesystem
Chapter 4 covered how the build system generates the various parts of the filesystem.
Let’s dig a little deeper into how you can control the build system’s filesystem generation.

Build templates and file locations

Table 4-2 listed the available build templates. Table 6-8 details the default install location
for modules built using each target build template. Note how everything gets installed
in one of /system’s subdirectories.

Filesystem | 185

www.it-ebooks.info

http://www.it-ebooks.info/

Table 6-8. Build templates and corresponding output locations
Template Default Output Location

BUILD_EXECUTABLE /system/bin
BUILD_JAVA_LIBRARY /system/framework
BUILD_SHARED_LIBRARY /system/lib
BUILD_PREBUILT No default. Make sure you explicitly specify either LOCAL_MODULE_CLASS or LOCAL_MOD

ULE_PATH.

BUILD_MULTI_PREBUILT Depends on type of module being copied.

BUILD_PACKAGE /system/app
BUILD_KEY_CHAR_MAP /system/usr/keychars

Internally, the build system generates a LOCAL_MODULE_PATH for each module built, de‐
pending on the module’s build template. This is where the compiled output is installed.
You can override the default by changing the value of LOCAL_MODULE_PATH within your
Android.mk. Let’s say, for instance, that you have a custom tool for your board that has
to be installed in /sbin instead of /system/bin. Your Android.mk could then look some‐
thing like this:

LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)

LOCAL_MODULE_TAGS := optional
LOCAL_SRC_FILES := $(call all-c-files-under, src)
LOCAL_PACKAGE_NAME := calibratebirdradar
LOCAL_MODULE_PATH := $(TARGET_ROOT_OUT_SBIN)

include $(BUILD_PACKAGE)

Note that this specifies $(TARGET_ROOT_OUT_SBIN), not /sbin. This is so the binary gets
installed in the proper out/target/product/PRODUCT_DEVICE/ directory. The TAR
GET_ROOT_OUT_* macros are defined in build/core/envsetup.mk, along with quite a few
installation default macros. Here’s the relevant snippet for our purposes:

TARGET_ROOT_OUT := $(PRODUCT_OUT)/root
TARGET_ROOT_OUT_BIN := $(TARGET_ROOT_OUT)/bin
TARGET_ROOT_OUT_SBIN := $(TARGET_ROOT_OUT)/sbin
TARGET_ROOT_OUT_ETC := $(TARGET_ROOT_OUT)/etc
TARGET_ROOT_OUT_USR := $(TARGET_ROOT_OUT)/usr

Explicitly copying files

In the case of some files, you don’t need the build system to build them in any manner;
you just need it to copy the files into the filesystem components it generates. That’s the
purpose of the PRODUCT_COPY_FILES macro that you can use in your product’s .mk.
Here’s an updated version of the CoyotePad’s full_coyote.mk from Chapter 4:

186 | Chapter 6: Native User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

2. The file was actually pointed out to me by then–Sony Ericsson engineer Magnus Bäck, who helped review
this book, on the android-building mailing list after I inquired about Android’s filesystem rights management.

$(call inherit-product, $(SRC_TARGET_DIR)/product/languages_full.mk)
$(call inherit-product, $(SRC_TARGET_DIR)/product/full.mk)

DEVICE_PACKAGE_OVERLAYS :=

PRODUCT_PACKAGES +=
PRODUCT_COPY_FILES += \
 device/acme/coyotepad/rfirmware.bin:system/vendor/firmware/rfirmware.bin \
 device/acme/coyotepad/rcalibrate.data:system/vendor/etc/rcalibrate.data

PRODUCT_NAME := full_coyotepad
PRODUCT_DEVICE := coyotepad
PRODUCT_MODEL := Full Android on CoyotePad, meep-meep

This will copy rfirmware.bin and rcalibrate.data from device/acme/coyotepad/ to the
target’s /system/vendor/firmware and /system/vendor/etc directories, respectively.

Default rights and ownership

One aspect we haven’t yet discussed is what and how filesystem rights and ownership
are assigned to each directory and file in the Android filesystem. If you’re willing to get
your hands dirty, I strongly encourage you to take a look at the system/core/include/
private/android_filesystem_config.h file. It doesn’t get a lot of publicity and it’s not doc‐
umented anywhere.2 It is, however, extremely important, as it provides the list of pre‐
defined system users, as well as the rights and ownership assigned to everything in the
system. Here’s a partial list of the UIDs/GIDs it defines, along with the associated user/
group names in 2.3/Gingerbread:

#define AID_ROOT 0 /* traditional unix root user */

#define AID_SYSTEM 1000 /* system server */

#define AID_RADIO 1001 /* telephony subsystem, RIL */
#define AID_BLUETOOTH 1002 /* bluetooth subsystem */
#define AID_GRAPHICS 1003 /* graphics devices */
#define AID_INPUT 1004 /* input devices */
...
#define AID_RFU2 1024 /* RFU */
#define AID_NFC 1025 /* nfc subsystem */

#define AID_SHELL 2000 /* adb and debug shell user */
#define AID_CACHE 2001 /* cache access */
#define AID_DIAG 2002 /* access to diagnostic resources */
...
#define AID_MISC 9998 /* access to misc storage */
#define AID_NOBODY 9999

Filesystem | 187

www.it-ebooks.info

http://www.it-ebooks.info/

#define AID_APP 10000 /* first app user */
...
static const struct android_id_info android_ids[] = {
 { "root", AID_ROOT, },
 { "system", AID_SYSTEM, },
 { "radio", AID_RADIO, },
 { "bluetooth", AID_BLUETOOTH, },
 { "graphics", AID_GRAPHICS, },
 { "input", AID_INPUT, },
...

If you go to your target’s shell and type ps, for instance, you’ll see something like this:
...
root 18048 1 61552 26700 c00a6548 afd0b844 S zygote
system 18090 18048 141756 50224 ffffffff afd0b6fc S system_server
system 18187 18048 75664 21828 ffffffff afd0c51c S com.android.systemui
app_16 18197 18048 78548 19292 ffffffff afd0c51c S com.android.inputmethod.
 latin
radio 18200 18048 86400 19580 ffffffff afd0c51c S com.android.phone
app_19 18201 18048 78636 23472 ffffffff afd0c51c S com.android.launcher
app_1 18234 18048 83904 22232 ffffffff afd0c51c S android.process.acore
app_2 18281 18048 72364 16696 ffffffff afd0c51c S com.android.deskclock
...

Notice how the system_server runs as the system user and how each app is run by a user
called app_N, with each app having a separate N. The kernel itself doesn’t provide those
names. Instead, Bionic uses the previous definitions to provide PID/GID-to-name con‐
version. In the case of apps, since each app is installed as a separate user (starting from
the base UID/GID for apps, 10000), app user names all start with app_ and are followed
by an integer value matching the actual UID/GID assigned to the app minus 10000. This
is slightly different starting with 4.2/Jelly Bean, with multiuser support. Now app names
also show user ownership with the form uM_appN, where M is the user ID and N is the
app ID.

Unlike other aspects of the AOSP’s build system, which allow you to isolate most of your
board-specific additions within a directory in device/, like device/acme/coyotepad from
our earlier example, there’s no substitute for modifying the main android_filesys
tem_config.h if you need to add new default users. The bold lines in the following snip‐
pet, for instance, show modifications for adding a birdradar user:

...
#define AID_RFU2 1024 /* RFU */
#define AID_NFC 1025 /* nfc subsystem */
#define AID_BIRDRADAR 1999 /* Bird radar subsystem */

#define AID_SHELL 2000 /* adb and debug shell user */
#define AID_CACHE 2001 /* cache access */
#define AID_DIAG 2002 /* access to diagnostic resources */
...

188 | Chapter 6: Native User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

static const struct android_id_info android_ids[] = {
 { "root", AID_ROOT, },
 { "system", AID_SYSTEM, },
 { "radio", AID_RADIO, },
...
 { "media", AID_MEDIA, },
 { "nfc", AID_NFC, },
 { "birdradar", AID_BIRDRADAR, },
 { "shell", AID_SHELL, },
 { "cache", AID_CACHE, },
...

We’re using 1999 instead of 1026 for our new user to avoid as much as
possible having to update this integer in future Android releases, should
new users be added by Google. In fact, the above snippet is from 2.3/
Gingerbread, where the factory IDs stop at 1025. In 4.2/Jelly Bean, the
last number used by default by the AOSP is 1028.

Reasons for adding new default users might include the addition of a new, still-
unsupported hardware type to the Android stack, or the desire to isolate from the An‐
droid stack a custom stack you’re running side by side with Android. It could also simply
be a matter of isolating a specific daemon using a separate user.

Conversely, here are snippets of the directory and file rights defined in android_filesys
tem_config.h:

static struct fs_path_config android_dirs[] = {
 { 00770, AID_SYSTEM, AID_CACHE, "cache" },
 { 00771, AID_SYSTEM, AID_SYSTEM, "data/app" },
 { 00771, AID_SYSTEM, AID_SYSTEM, "data/app-private" },
 { 00771, AID_SYSTEM, AID_SYSTEM, "data/dalvik-cache" },
 { 00771, AID_SYSTEM, AID_SYSTEM, "data/data" },
...
 { 00750, AID_ROOT, AID_SHELL, "sbin" },
 { 00755, AID_ROOT, AID_SHELL, "system/bin" },
 { 00755, AID_ROOT, AID_SHELL, "system/vendor" },
...
 { 00755, AID_ROOT, AID_ROOT, 0 },
};
...
static struct fs_path_config android_files[] = {
 { 00440, AID_ROOT, AID_SHELL, "system/etc/init.goldfish.rc" },
 { 00550, AID_ROOT, AID_SHELL, "system/etc/init.goldfish.sh" },
...
 { 00644, AID_SYSTEM, AID_SYSTEM, "data/app/*" },
 { 00644, AID_SYSTEM, AID_SYSTEM, "data/app-private/*" },
 { 00644, AID_APP, AID_APP, "data/data/*" },
...
 { 00755, AID_ROOT, AID_SHELL, "system/bin/*" },

Filesystem | 189

www.it-ebooks.info

http://www.it-ebooks.info/

3. That’s because the tools used to generate the filesystem images ignore the rights and ownership set for files
on the host. Instead, they rely completely on android_filesystem_config.h.

 { 00755, AID_ROOT, AID_SHELL, "system/xbin/*" },
 { 00755, AID_ROOT, AID_SHELL, "system/vendor/bin/*" },
 { 00750, AID_ROOT, AID_SHELL, "sbin/*" },
 { 00755, AID_ROOT, AID_ROOT, "bin/*" },
 { 00750, AID_ROOT, AID_SHELL, "init*" },
 { 00644, AID_ROOT, AID_ROOT, 0 },
};

If, for any reason, you add a new directory or a file into an unlisted (new) directory in
the filesystem, the default ownership and access rights will be dictated by the last entry
in the array just shown—the one with a 0 instead of a path within quotes. In other words,
a new directory will have 755 access rights and be owned by the AID_ROOT user and
group, and a file added to an unlisted directory will have 644 access rights and be owned
by the AID_ROOT user and group.

If you’d like to add glibc-linked binaries to your target, as is shown in Appendix A, for
instance, you’ll likely want to have a /lib directory to host the glibc-libraries; /lib being
the default library for traditional C libraries under Linux. However, by default, the li‐
braries in there won’t be executable, even if they were on your host as you generated
them,3 and, therefore, any binary linked against glibc will fail to run. To remedy this
problem, you’ll need to modify the android_files array in android_filesystem_con
fig.h to look something like this:

...
 { 00750, AID_ROOT, AID_SHELL, "sbin/*" },
 { 00755, AID_ROOT, AID_ROOT, "bin/*" },
 { 00755, AID_ROOT, AID_ROOT, "lib/*" },
 { 00750, AID_ROOT, AID_SHELL, "init*" },
 { 00644, AID_ROOT, AID_ROOT, 0 },
};

This is yet another modification that you couldn’t isolate into a device-specific directory
like device/acme/coyotepad.

Note that typically, the /system/vendor directory is reserved for vendor-specific exten‐
sions. In fact, android_filesystem_config.h states that all binaries in /system/vendor/bin
should be executable. Hence, if you’re going to add a substantial number of files to the
filesystem, you might want to look at putting your additions in the /system/vendor
directory. That would be the clean way to do it. But, hey, who ever said embedded and
clean were synonymous?

190 | Chapter 6: Native User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

Generally speaking, trying to stay within the boundaries of what’s per‐
mitted by the AOSP’s build system is especially useful if you want to
simplify your device support for future Android versions. If you isolate
all your device-specific code in a relevant directory in device/, adding
support for your device in the next AOSP is, theoretically, just a matter
of copying your directory into that AOSP’s device/ directory and fixing
your code for any API modifications.
While this philosophy makes sense for handsets, embedded systems are
often one-offs where previous products get nothing but the most es‐
sential updates, if any, and the next product’s hardware platform will be
the subject of a selection process that might result in the use of a com‐
pletely different SoC. Hence, abiding by the “rules” in such circum‐
stances might actually be counterproductive, as it’ll impose unnecessary
limitations and restrictions. I’ll keep pointing out the “Android way”
and all other possibilities as we move forward, but I’ll leave it up to you
to decide what’s best for your own project.

adb
The filesystem layout we just discussed is only a skeleton for the rest of Android to live
in. During board bringup, the first piece of Android software you’ll probably want to
make sure runs on your device after the kernel is likely going to be adb. We already
covered its basic operation in Chapter 3. We’re now going to delve into its use in much
greater detail.

Theory of Operation
While surprisingly simple in use, adb is a very powerful tool with uses both for app
development and platform development. Whereas several areas of Android build on or
replace functionality found in traditional embedded Linux systems, prior to Android
there was no project or package that provided functionality similar to adb in the Linux
world (as far as I know, at least). Hence, adb fills an important gap and is a refreshing
take on how host-target interactions can be improved and mediated.

adb is actually made up of several components, which themselves connect to several
other system components to deliver adb’s integrated set of capabilities. Figure 6-3 il‐
lustrates adb’s interconnections and operation. Interestingly, both adb’s host side and
target side, save for the ddms-related components, are built from a single codebase in
system/core/adb/, which ensures version coherency among components.

adb | 191

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 6-3. ADB and its interconnections

adb acts both as a transparent transport mechanism and as a service provider. Its two
most important components are the adb server running on the host and the adbd
daemon running on the target. These two components effectively implement a proxy
protocol on which all adb services are implemented. They can be linked together either
through USB or regular TCP/IP. The command set that adb makes available is identical
in both cases.

The names used in Android can be confusing here. Usually, a server
runs remotely from a client, and some client utility connects to the
server through the network. In this case, the adb “server” is actually a
daemon running in the background on the host, and adbd is another,
separate daemon running on the target.

The adb server is started automatically whenever the adb command is invoked on the
command line. It monitors connected devices and maintains communication with the
remote adbd daemons. The latter interface with the native user-space, the Java user-
space and the kernel to provide their functionality. We’ll discuss some of those inter‐
actions in greater detail as we go through adb’s functionality below.

On the host side, two major pieces of software initiate connection with the adb server:
the adb command and the ddms (Dalvik Debug Monitor Server) libraries (ddmlib and
ddmuilib). The ddms libraries are themselves used by the ddms utility, which is a

192 | Chapter 6: Native User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

standalone tool, and the ddms plug-in typically added to Eclipse through the installation
of Android’s ADT plug-in for app developers. The ddms libraries provide primitives
both to talk to the adb server (ddmlib) and display/manage UI parts (ddmuilib). This
is why the user interfaces are identical between parts of the ddms utility and the ddms
Eclipse plug-in.

Note that the adb command and the ddms libraries don’t fully expose the adb server’s
capabilities in an equal way. The adb server, for instance, can grab the content of the
target’s framebuffer for the purpose of providing screenshots. This functionality is ex‐
posed by the ddms utility, but it isn’t available on the command line through adb.

To provide its services, the adb server opens socket 5037 on the host and listens for
connections. Anyone can connect to the server as long as he respects the procotol. Have
a look at OVERVIEW.TXT and SERVICES.TXT in system/core/adb/ if you’d like to
implement code that talks directly to the adb server. The adb server can also interact
with an adbd daemon running inside an emulator on the host in the same way it would
to the same daemon on a remote target.

In addition, adb can also interact with the emulator’s console. Every emulator instance
that starts listens for connections on a different port number; the number is displayed
on the upper-left corner of the emulator window and starts from 5554. When you con‐
nect to that port number using telnet, you are able to issue special commands to control
the emulator’s behavior, as detailed in Using the Android Emulator in Google’s app
developers guide. These commands include forwarding ports from the host to the em‐
ulator and resizing the emulator’s window. To simplify matters, adb makes it possible
to send the same commands to the emulator without actually having to go through
telnet.

Main Flags, Parameters, and Environment Variables
As alluded to in Chapter 3 and as we’ll see shortly in detail, adb provides a lot of com‐
mands. However, adb can be used to simultaneously interact with several Android de‐
vices and AOSP builds. Hence, there are several flags, parameters, and environment
variables to gate its behavior, as presented in Table 6-9. If there’s only one device con‐
nected or emulator instance running, then adb’s operation is relatively simple, since it
assumes that that single instance is the one you want to execute your commands on.

Table 6-9. adb’s flags, parameters, and environment variables
Item Description

-d This flag tells adb to execute the command passed on the USB-connected device. If you have both
an emulator running and an Android device connected through USB to your host, then this will
ensure adb executes your command on the device, not the emulator. Of course this won’t work if
you have more than one device connected.

adb | 193

www.it-ebooks.info

https://developer.android.com/guide/developing/devices/emulator.html
http://www.it-ebooks.info/

Item Description

-e Similarly to -d, this tells adb to connect to the emulator instance running, even if there is an
Android device connected. Again, it won’t work if you have multiple emulator instances running.

-s <serial num

ber>

This tells adb to connect to the device designated by the given serial number. Despite it being
tedious to have to enter the full serial number of a device to use each adb command, this (and
ANDROID_SERIAL below) will be the only way to go if you have multiple devices connected or
multiple emulators running.

-p <product name

or path>

Some of adb’s commands require access to the sources that were used to build the target’s AOSP. If
you’re running adb from the same shell where you built the AOSP, it will be able to properly find
those since the ANDROID_PRODUCT_OUT environment variable will be set. If that’s not the
case, you’ll need to use -p to indicate the path to the product’s output directory within an AOSP
source tree.

ANDROID_SERIAL If you constantly have multiple devices connected and want to avoid having to use the -s flag to
specify the serial of one specific device that you operate on very frequently, set the ANDROID_SE
RIAL environment variable to that device’s serial number, and adb will always connect to that
device by default unless you explicitly use -s to override.

ADB_TRACE If you want to debug or monitor the interaction betweeen the adb server on the host and the adbd
daemon on the target, you can set the ADB_TRACE environment variable to one of or a series of
comma-, colon-, semicolon-, or space-separated combinations from the following values: 1, all,
adb, sockets, packets, rwx, usb, sync, sysdeps, transport, jdwp.

Basic Local Commands
Let’s start with some of adb’s basic commands that run locally. First, if you’d like to start
the adb server manually, you can do so like this:

$ adb start-server
* daemon not running. starting it now on port 5037 *
* daemon started successfully *

The server will, however, start automatically whenever needed by any other adb com‐
mand you type. So you can usually skip over starting the server manually. There are
cases, unfortunately, where you actually have to manually shut the server down—usually
you should do this whenever any of your adb commands seem to hang:

$ adb kill-server

If you’d like to know adb’s capabilities, you can either start the command without any
parameters or type:

$ adb help
Android Debug Bridge version 1.0.26

 -d - directs command to the only connected USB device
 returns an error if more than one USB device is
 present.
 -e - directs command to the only running emulator.
 returns an error if more than one emulator is
 running.

194 | Chapter 6: Native User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

 -s <serial number> - directs command to the USB device or emulator
 with the given serial number. Overrides
 ANDROID_SERIAL
...
device commands:
 adb push <local> <remote> - copy file/dir to device
 adb pull <remote> [<local>] - copy file/dir from device
 adb sync [<directory>] - copy host->device only if changed
 (-l means list but don't copy)
 (see 'adb help all')
 adb shell - run remote shell interactively
 adb shell <command> - run remote shell command
 adb emu <command> - run emulator console command
...

The help screen above gave the command’s version number as part of the output. But
you can ask adb to explicitly print its version number:

$ adb version
Android Debug Bridge version 1.0.26

Like the rest of the AOSP, adb is a moving target. Here’s the version in 4.2/Jelly Bean:
$ adb version
Android Debug Bridge version 1.0.31

Device Connection and Status
Let’s now take a look at the commands adb provides for managing its communications
with devices. First, if you want to see which devices are visible to adb, you can type:

$ adb devices
List of devices attached
emulator-5554 device
0123456789ABCDEF device
emulator-5556 device

If you’d like to connect to a remote device whose adbd daemon is running on TCP/IP
instead of USB, you can use the connect command:

$ adb connect 192.168.202.79:7878
connected to 192.168.202.79:7878
$ adb devices
List of devices attached
emulator-5554 device
0123456789ABCDEF device
emulator-5556 device
192.168.202.79:7878 device

connect’s formal description is (5555 being the default port):
adb connect <host>[<:port>]

adb | 195

www.it-ebooks.info

http://www.it-ebooks.info/

To designate that target as the one on which to issue a given command, just use the
IP:PORT information displayed by adb devices as the serial number. To get a shell, for
instance:

$ adb -s 192.168.202.79:7878 shell

When you’re done, you can disconnect from the device; it will then stop appearing in
the list of devices seen by the adb server:

$ adb disconnect 192.168.202.79:7878

disconnect’s formal description is (if no device is specified then all TCP/IP-connected
devices will be disconnected):

adb disconnect [<host>[<:port>]]

If you’d like adb to hang waiting for the device to come online, you can type this:
$ adb wait-for-device

The shell will then suspend until the device comes online. adb will return to the shell
when the device is online. This is useful for scripting purposes, as you can make your
script wait for a device to be ready before proceeding with other commands.

If you want to inquire about a device’s status, type:
$ adb -s 0123456789ABCDEF get-state
device

States include bootloader, device, offline, and unknown. The device value is synony‐
mous with the device being online. offline is self-explanatory. bootloader means the
device is currently in the bootloader. And unknown means adb can’t recognize the current
state of the device.

If, for any reason, you need to explicitly ask about a device’s serial number, such as when
you’re scripting adb commands, you can do so:

$ adb -d get-serialno
0123456789ABCDEF

Finally, if you need to have a shell window open that continuously reports the current
device’s state, you can do so with this:

$ adb -d status-window

This will clear the screen and display something like this at the top of the terminal (the
state reported beside State: being the device’s “real-time” state):

Android Debug Bridge
State: device

To exit, you just type Ctrl-C.

196 | Chapter 6: Native User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Remote Commands
Up to now, the commands we’ve seen haven’t actually allowed us to do anything on the
remote target or get any information about it. So let’s start having some fun.

Shell

Obviously, if you’re a geek like me, one of the first things you’ll want to do is shell into
your device for fun and profit. With 2.3/Gingerbread you’ll get this:

$ adb shell
#

4.2/Jelly Bean has a much richer shell, and you’ll get this instead:
$ adb shell
root@android:/ #

In both cases, the command results in the adbd daemon spawning a shell on the target
to execute the commands you type. All input/output (i.e., stdin, stdout, and stderr) for
the commands will then be proxied between the adb server running on the host and
the adbd daemon running on the target.

To exit from the target’s shell and return to your host’s shell, just type Ctrl-D. You can
also launch a specific command by passing it as a parameter to the shell command—in
this case printing out the CPU information for a BeagleBone:

$ adb -d shell cat /proc/cpuinfo
Processor : ARMv7 Processor rev 2 (v7l)
BogoMIPS : 718.02
Features : swp half thumb fastmult vfp edsp thumbee neon vfpv3 tls
CPU implementer : 0x41
CPU architecture: 7
CPU variant : 0x3
CPU part : 0xc08
CPU revision : 2

Hardware : am335xevm
Revision : 0000
Serial : 0000000000000000

This is shell’s formal description:
adb shell [<command>]

Dumping the logs

If you’d like to dump Android’s logger buffer, you can type this:
$ adb -d logcat
--------- beginning of /dev/log/main
I/DEBUG (59): debuggerd: Mar 27 2012 05:30:39
--------- beginning of /dev/log/system

adb | 197

www.it-ebooks.info

http://www.it-ebooks.info/

I/Vold (57): Vold 2.1 (the revenge) firing up
D/Vold (57): USB mass storage support is not enabled in the kernel
D/Vold (57): usb_configuration switch is not enabled in the kernel
D/Vold (57): Volume sdcard state changing -1 (Initializing) -> 0 (No-Media)
D/Vold (57): Volume usb state changing -1 (Initializing) -> 0 (No-Media)
D/Vold (57): Volume sdcard state changing 0 (No-Media) -> 2 (Pending)
D/Vold (57): Volume sdcard state changing 2 (Pending) -> 1 (Idle-Unmounted)
I/Netd (58): Netd 1.0 starting
I/ (61): ServiceManager: 0xad50
W/AudioHardwareInterface(61): Using stubbed audio hardware. No sound will be
produced.
D/AudioHardwareInterface(61): setMode(NORMAL)
I/CameraService(61): CameraService started (pid=61)
I/AudioFlinger(61): AudioFlinger's thread 0xc638 ready to run
E/dhcpcd (65): timed out
D/AndroidRuntime(224):
D/AndroidRuntime(224): >>>>>> AndroidRuntime START com.android.internal.os.Zyg
oteInit <<<<<<
D/AndroidRuntime(224): CheckJNI is ON
D/dalvikvm(224): creating instr width table
I/SamplingProfilerIntegration(224): Profiler is disabled.
I/Zygote (224): Preloading classes...
...

That command is actually an equivalent of this:
$ adb -d shell logcat

We’ll discuss the logcat command in greater detail later, but know that you can line up
the same parameters after the adb logcat part you typed in as if you were running
logcat straight from the target’s command line. So, for instance, if you want to dump the
“radio” buffer instead of the “main” buffer, you can do this:

$ adb -d logcat -b radio
I/PHONE (394): Network Mode set to 0
I/PHONE (394): Cdma Subscription set to 1
I/PHONE (394): Creating GSMPhone
D/PHONE (394): mDoesRilSendMultipleCallRing=true
D/PHONE (394): mCallRingDelay=3000
W/GSM (394): Can't open /system/etc/voicemail-conf.xml
W/GSM (394): Can't open /system/etc/spn-conf.xml
D/GSM (394): [DSAC DEB] registerForPsRestrictedEnabled
D/GSM (394): [DSAC DEB] registerForPsRestrictedDisabled
D/GSM (394): [GsmDataConnection-1] DataConnection constructor E
D/GSM (394): [GsmDataConnection-1] clearSettings
D/GSM (394): [GsmDataConnection-1] DataConnection constructor X
D/GSM (394): [GsmDataConnection-1] Made GsmDataConnection-1
D/RILJ (394): [0000]> RIL_REQUEST_REPORT_STK_SERVICE_IS_RUNNING
D/STK (394): StkService: StkService: is running
...

198 | Chapter 6: Native User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

adb will also honor the ANDROID_LOG_TAGS environment variable if it’s set in the host’s
shell when you start the command. ANDROID_LOG_TAGS is taken into account by logcat,
as we’ll see later, for filtering the output it prints. This is logcat’s formal description:

adb logcat [<parameters>]

logcat with ddms Libraries
If you’ve ever used ddms or Android’s ADT plug-in, you know they can present the same
Android logger information that’s printed to the command line by logcat. There’s a
difference in how each retrieves its information, however. While, as I just explained, an
adb logcat actually just runs the logcat command on the target and proxies the output
back to the host, ddms’s libraries use a different adb server mechanism from the one
used to proxy shell I/O, the log service. This service proxies the content of the rele‐
vant /dev/log buffer directly back to the host, without passing through the target’s log‐
cat. This is a case where there are in fact two ways to skin a cat.

The protocol between the adb server and its client is in fact quite rich, as I alluded to
earlier. You’ll need to dig into adb’s sources to get the full picture, but suffice it to say
that the server communicates with the target’s adbd daemon to provide multiple types
of services. The overall ADB functionality exposed through the adb command line and
ddms all rely on those services. However, you can write code that talks directly to the
adb server to tap into any of the services it provides.

Getting a bug report

Much like the logcat target command—for which there’s a shortcut with adb that doesn’t
require explicitly telling it to invoke shell—adb provides a shortcut for bugreport. The
latter is a target command that dumps the state of the system for bug-reporting purposes.
It, in effect, results in the dumpstate command to run on the target:

$ adb -d bugreport
==
== dumpstate: 2000-01-01 05:05:08
==

Build: beaglebone-eng 2.3.4 GRJ22 eng.karim.20120327.052544 test-keys
Bootloader: unknown
Radio: unknown
Network: (unknown)
Kernel: Linux version 3.1.0-g62911f8-dirty (a0131746@sditapps03) (gcc version 4.
4.3 (GCC)) #1 Mon Nov 28 22:05:07 IST 2011
Command line: console=ttyO0,115200n8 androidboot.console=ttyO0 mem=256M root=/de
v/mmcblk0p2 rw rootfstype=ext3 rootwait init=/init ip=off

------ MEMORY INFO (/proc/meminfo) ------
MemTotal: 253264 kB

adb | 199

www.it-ebooks.info

http://www.it-ebooks.info/

MemFree: 198308 kB
...

You might wonder, why not just do something like this instead, since the bugreport
command invokes dumpstate?

$ adb -d shell dumpstate

The trouble is that dumpstate needs to run as root, and some devices don’t allow their
shells to run as root. Such is the case of the vast majority of handsets on the market. On
those devices, therefore, it wouldn’t be possible to type the above command, but it would
still be possible to use bugreport. Here’s what happens on my phone:

$ adb -s 4xxxxxxxxxxxxxx shell dumpstate
dumpstate: permission denied
$ adb -s 4xxxxxxxxxxxxxx shell bugreport
==
== dumpstate: 2012-05-04 13:38:05
==

Build: GINGERBREAD.UCKI3
Bootloader: unknown
Radio: unknown
...

Essentially, bugreport causes init to start dumpsys in a mode where it opens a Unix
domain socket and listens for connections for dumping its output. bugreport then con‐
nects to that socket and copies the content it reads to its own standard output, which is
then proxied through adb to your host’s shell. Users or technicians can therefore create
bug reports for your devices even if you don’t give them root access.

Port forwarding

Another very interesting feature of adb is that it allows you to forward ports between
the host and the target. For instance, this command will forward local port 8080 to the
target’s port 80:

$ adb -d forward tcp:8080 tcp:80

Thereafter, any connection you make to your host’s port 8080 will be redirected to the
target’s port 80. If you’re running a web server (which runs on port 80 by default) on
your Android device, for example, you’ll be able to connect your host’s web browser to
localhost:8080 to browse your device.

adb’s forward command can, however, do a lot more than that. It can in fact forward
host ports to more than just ports on the target. For instance, you can forward local port
8000 to one of the target’s character devices:

$ adb -d forward tcp:8000 dev:/dev/ttyUSB0

200 | Chapter 6: Native User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

In that case, any read/write operations conducted on port 8000 will result in read/write
operations on the remote /dev/ttyUSB0. Table 6-10 lists the connection types supported
by forward and its formal description is:

adb forward <local> <remote>

Table 6-10. adb forward’s connection types
Connection Description

tcp:<port> Regular TCP port. This should be an nonnegative integer value.

localfilesystem:<unix do

main socket>

A regular Unix domain socket. This shows up as an entry in the filesystem.

localabstract:<unix do

main socket>

An “abstract” Unix domain socket. This is like a Unix Domain socket, but it’s a Linux-
specific extension. Have a look at the unix man page for more detail: man 7 unix.

localreserved:<unix do

main socket>

Android’s “reserved” Unix domain sockets. They’re all in /dev/socket, and they have
very specific uses that we’ll cover as we go. These include dbus, installd, keystore,
netd, property_service, rild, rild-debug, vold, and zygote.

dev:<character device

name>

Actual devices on the target. You must provide the full path to the device in the
filesystem.

jdwp:<pid> Used to specify the PID of a Dalvik process for debugging purposes.

Dalvik debugging

It’s worth expanding a bit more on forward’s ability to proxy connections to Dalvik
processes. Dalvik implements the Java Debug Wire Protocol (JDWP), thereby allowing
you to use the regular Java debugger jdb to debug your apps. Obviously this is shrink-
wrapped into Eclipse for app developers, but if you want to use jdb on the command
line, forward’s ability to redirect Dalvik processes’ debug ports to your host becomes
essential. Here’s an example:

$ adb forward tcp:8000 jdwp:376
$ jdb -attach localhost:8000
Set uncaught java.lang.Throwable
Set deferred uncaught java.lang.Throwable
Initializing jdb ...
>

To know which PIDs are debuggable through JDWP, you type:
$ adb jdwp
271
376
386
389
390
425
473
480
...

adb | 201

www.it-ebooks.info

http://www.it-ebooks.info/

adb is in fact a crucial component for debugging any Java on the target. When the adbd
daemon starts on the target, it opens the “abstract” Unix domain socket jdwp-
control and awaits connections. Dalvik processes that start afterward connect to that
socket and therefore make themselves “visible” for debugging. To allow app developers
to debug their apps, the ddms Eclipse plug-in goes through ddmlib to talk to the adb
server to debug the app. Or, as we just saw, you can use jdb to debug on the command
line.

Note that all of this requires that adbd be running on the target before any Dalvik app
is started. Only those Dalvik apps that you start after adbd will be debuggable.

Filesystem Commands
adb also allows you to manipulate and interact with the target’s filesystem in a variety
of ways. If you want to copy a file to the device, for instance, you can use push:

$ adb push acme_user_manual.pdf /data/local

This will copy the acme_user_manual.pdf file to the target’s /data/local directory:

$ adb shell ls /data/local
acme_user_manual.pdf

You can also copy files from the target to the host:
$ adb pull /proc/cpuinfo
$ cat cpuinfo
Processor : ARMv7 Processor rev 2 (v7l)
BogoMIPS : 718.02
...

As I explained earlier in this chapter, the target’s filesystem parts aren’t all mounted with
the same rights. /system, for example, is typically mounted as read-only. If you’d like to
remount it in read-write mode, to add or modify a file on it, for instance, you can do so
using remount. Here’s an example:

$ adb push acme_utility /system/bin
failed to copy 'acme_utility' to '/system/bin/acme_utility': Read-only file system
$ adb remount
remount succeeded
$ adb push acme_utility /system/bin
$

Of course push’s functionality is useful only for copying a handful of files. If you’re
looking to update the entirety of either of the target’s /data or /system partitions, you
can do so using the sync command. It will essentially conduct an operation similar to
the rsync command, making sure that the target’s files are synchronized with those on
the host. If you run adb sync from the same directory where the target’s AOSP was built,
then it will automatically find the files to sync because the ANDROID_PRODUCT_OUT en‐
vironment variable will point to the right directory. (Assuming, of course, that you ran

202 | Chapter 6: Native User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

build/envsetup.sh and lunch as required for your target.) Otherwise, you’ll need to
manually point it to the right output directory like this:

$ adb -d -p ~/android/beaglebone/out/target/product/beaglebone/ sync
syncing /system...
push: /home/karim/android/beaglebone/out/target/product/beaglebone/system/xbin/c
rasher -> /system/xbin/crasher
push: /home/karim/android/beaglebone/out/target/product/beaglebone/system/xbin/s
cp -> /system/xbin/scp
push: /home/karim/android/beaglebone/out/target/product/beaglebone/system/xbin/o
pcontrol -> /system/xbin/opcontrol
push: /home/karim/android/beaglebone/out/target/product/beaglebone/system/xbin/t
cpdump -> /system/xbin/tcpdump
push: /home/karim/android/beaglebone/out/target/product/beaglebone/system/xbin/o
profiled -> /system/xbin/oprofiled
push: /home/karim/android/beaglebone/out/target/product/beaglebone/system/xbin/t
imeinfo -> /system/xbin/timeinfo
push: /home/karim/android/beaglebone/out/target/product/beaglebone/system/xbin/c
pueater -> /system/xbin/cpueater
...
491 files pushed. 0 files skipped.
1317 KB/s (81337934 bytes in 60.310s)
syncing /data...
push: /home/karim/android/beaglebone/out/target/product/beaglebone/data/app/gles
2_texture_stream.apk -> /data/app/gles2_texture_stream.apk
push: /home/karim/android/beaglebone/out/target/product/beaglebone/data/app/test
_iterator_host -> /data/app/test_iterator_host
push: /home/karim/android/beaglebone/out/target/product/beaglebone/data/app/test
_iostream_host -> /data/app/test_iostream_host
push: /home/karim/android/beaglebone/out/target/product/beaglebone/data/app/test
_string_host -> /data/app/test_string_host
...
25 files pushed. 0 files skipped.
2804 KB/s (4078615 bytes in 1.420s)

You probably want to reboot the target after such an update, as there might be stale file
references lingering. Note that sync syncs only /system and /data. It doesn’t sync anything
else. In other words, you can’t use sync to synchronize the contents of the RAM disk
mounted as the root filesystem for the target. Even if it allowed you to, it wouldn’t be of
much use, since the RAM disk lives only in RAM and its contents are not written through
to persistent storage.

sync can also be told to sync only the data or the system partitions, instead of both.
Simply pass the partition you’d like to sync as a parameter:

$ adb -e sync data
syncing /data...
...

sync’s formal description is:
adb sync [<directory>]

adb | 203

www.it-ebooks.info

http://www.it-ebooks.info/

If, instead of copying single files or syncing entire partitions, all you’re looking for is to
install new apps, then you should use install instead:

$ adb install FastBirds.apk
299 KB/s (13290 bytes in 0.043s) pkg: /data/local/tmp/FastBirds.apk
Success

Essentially, this will invoke the pm (short for “package manager”) command on the
target. It will itself interact with the PackageManager system service to get your app
installed. To remove it from the device, you can then use the uninstall command:

$ adb uninstall com.acme.fastbirds
Success

You’ve likely noted that while install relies on the filename, uninstall actually needs the
full package name. Each command can actually take a few flags, as explained in
Table 6-11:

adb install [-l] [-r] [-s] <file>
adb uninstall [-k] <package>

Table 6-11. Flags for install and uninstall
Flag Description

-l Tells install to ensure that the app is forward-locked. In other words, it disallows the user from copying the .apk off the
device. In practice, this means that the app is installed in /data/app-private instead of /data/app.

-r Tells install to reinstall the app, preserving its data as is.

-s Tells install to install the app on external storage (the SD card) instead of internal storage.

-k Tells uninstall to keep the app’s data even though the .apk is removed.

State-Altering Commands
For lack of a better name for this category, I’ve lumped together in this section all the
commands that in one way or another significantly alter the target’s behavior. It’s not
like the previous commands couldn’t or didn’t alter the target, it’s just that those you’ll
find here do so in especially significant ways.

Rebooting

Let’s start with one of the more obvious ones:
$ adb reboot

If you hadn’t already guessed, this reboots the target. This actually invokes the re
boot() system call on the target’s kernel while passing it the appropriate magic values
to effect a reboot. You can also pass a parameter to reboot to tell it to reboot either in
the bootloader or the recovery mode:

$ adb reboot bootloader

204 | Chapter 6: Native User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

And:
$ adb reboot recovery

Note, however, that this parameter is passed as is to the kernel. It’ll be the job of your
board support code in the kernel to deal with this parameter appropriately. If your
board-support kernel code doesn’t process the string passed to the reboot() function,
it’s simply ignored, and all that happens is a plain reboot. Another way to reboot into
the bootloader is:

$ adb reboot-bootloader

It’s important to highlight that all those reboot commands result in an immediate
reboot. There is no graceful shutdown of any process or system service. Hence, if you
need to do any cleanup, it’s best to do so prior to issuing the reboot command.

Running as root

By default on a development board, most of adb’s commands will work to their full
capabilities without a problem, because the adbd daemon on the target will likely be
running as root. On a production system like a commercial handset, however, it’s likely
that adbd isn’t running as root but rather as the shell user, which has far fewer privileges.
Hence, commands such as adb shell will also be running only with shell’s privileges.

The adbd daemon’s default privileges will depend on how the AOSP is built and the
target that it’s running on. If it’s running on the emulator, for example, adbd will always
run as root. In all other cases, adbd’s privileges will depend on the TARGET_BUILD_VAR
IANT chosen to build the AOSP. If it’s userdebug or user, adbd won’t run as root, it’ll
run as the shell user when started. In the case of userdebug, you can ask it to restart
as root by typing:

$ adb root
restarting adbd as root

If you issue the same command on a user build, you’ll get this—in other words, you
can’t override the default:

$ adb root
adbd cannot run as root in production builds

If you build with the eng variant, as is likely the case during development, adbd will start
as root, and here’s what happens when you insist:

$ adb root
adbd is already running as root

The same will happen if the system is already running adbd as root because of a previous
adb root command. All of this behavior is gated by the ro.secure, ro.debuggable, and
service.adb.root global properties. The two former are set at build time, while the
latter is set by adb’s root command. Both user and userdebug cause ro.secure to be

adb | 205

www.it-ebooks.info

http://www.it-ebooks.info/

set to 1, but only userdebug and eng cause ro.debuggable to be set to 1. Obviously
those global properties are checked by more than just adbd.

Switching connection type

By default, the adb server checks for running emulator instances running only on the
host and devices physically connected to the host through USB. You can, as we saw
earlier, nonetheless connect devices that have their adbd daemons listening on a
TCP/IP port instead of USB using adb connect. What we haven’t looked at yet is how to
get adbd to use TCP/IP instead of USB. Assuming the device is already connected
through USB, you can ask it to use TCP/IP instead, like this:

$ adb -s 0123456789ABCDEF tcpip 7878
restarting in TCP mode port: 7878

Essentially, this will set the service.adb.tcp.port global property on the target to 7878
and restart the adbd daemon. Upon restarting, the daemon will then wait for connec‐
tions on the given port instead of on USB. You can then connect to it like above:

$ adb connect 192.168.202.79:7878
connected to 192.168.202.79:7878

To switch it back to USB, you can type this:
$ adb -s 192.168.172.79:7878 usb
restarting in USB mode

Effectively, this command is equivalent to typing:
$ adb -s 192.168.172.79:7878 shell
setprop service.adb.tcp.port 0
ps
...
root 66 1 3412 164 ffffffff 00008294 S /sbin/adbd
...
kill 66

In both cases, adbd is made to exit and is automatically restarted by init. It then checks
service.adb.tcp.port and starts accordingly. If, for any reason, you don’t have a USB
connection to your device, you can always manually preset service.adb.tcp.port on
the device so that adbd always starts on that port number. We’ll discuss global property
setting later. connect’s formal description is:

adb tcpip <port>

Controlling the emulator

As explained earlier, you can connect to each emulator’s console using telnet:
$ telnet localhost 5554
Trying 127.0.0.1...
Connected to localhost.

206 | Chapter 6: Native User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

Escape character is '^]'.
Android Console: type 'help' for a list of commands
OK
help
Android console command help:

 help|h|? print a list of commands
 event simulate hardware events
 geo Geo-location commands
 gsm GSM related commands
 kill kill the emulator instance
 network manage network settings
 power power related commands
 quit|exit quit control session
 redir manage port redirections
 sms SMS related commands
 avd manager virtual device state
 window manage emulator window

try 'help <command>' for command-specific help
OK

Google’s online manual explains the use of each of these commands in detail. Unfortu‐
nately, having to use telnet to access each of these commands can be cumbersome,
especially if you need to script part of what you need to do. Hence, adb allows you to
launch these same exact commands like any of its other commands:

$ adb -e emu redir add tcp:8080:80

This will redirect all connections to the host’s port 8080 to the target’s port 80. The part
of the command line after emu is exactly the same command that you could have typed
through the telnet session to redirect the port.

Tunneling PPP
One of the external projects included in the AOSP is the standard PPP daemon used in
most Linux-based distributions and available at https://ppp.samba.org/. You can ask adb
to set up a PPP connection between the host and the target. This might be for tethering
or simply to create a network connection between the host and the target when you
have only a USB connection between both. Here’s the formal definition of the ppp
command:

adb ppp <adb service name> [ppp opts]

adb | 207

www.it-ebooks.info

https://ppp.samba.org/
http://www.it-ebooks.info/

4. Note that this command is too long to fit in a single line in this book and is therefore line-wrapped. The \ at
the end of the first line and the > at the beginning of the second line are there just to show the line-wrapping.

Unfortunately, this by itself is insufficient to understand how to use this command.
Worse, of all adb commands, this one is the most poorly documented. The more com‐
mon way you’re likely to use this command is:4

adb ppp "shell:pppd nodetach noauth noipdefault /dev/tty" nodetach noauth \
> noipdefault notty <local-ip>:<remote-ip>

Essentially, what’s happening here is that the host’s pppd daemon is being started with
the following parameters:

nodetach noauth noipdefault notty <local-ip>:<remote-ip>

And the target’s pppd is being started with the following parameters:
nodetach noauth noipdefault /dev/tty

adb then proxies the communication between the two pppd daemons and you therefore
have a network connection established between the host and the target. You’ll likely
need to do a little more legwork to figure out exactly what kind of networking connec‐
tion you want to establish and the specific IP parameters. But with the above, you’ll at
least have a good starting point. I would encourage you to read pppd’s man page on your
host for more information on its full capabilities.

I also encourage you to have a look at some of the following articles on the web for more
details and examples on the use of this adb feature:

• ppp over adb (for linux/unix users)
• device shows up in lsusb + adb but not in ifconfig
• USB Tether for Xperia X10 Mini Pro
• creates a ppp link between my Ubuntu development machine and BeagleBoard

running Android connected via USB

Android’s Command Line
As I said earlier, one of the first Android-specific tools you’re likely to encounter is
adb, and one of its most common uses is shelling into the target. And since during board
bringup you’re likely to spend quite some time on the command line before having a
functional UI, it’s only fitting to now cover Android’s command line. In fact, it’s possible
that you’ll likely have to deal directly with Android’s command line, probably through
a serial console, even before ADB is fully functional: This will be the case if your device
doesn’t possess USB capabilities or doesn’t yet have a functional USB driver or TCP/IP-
capable network interface.

208 | Chapter 6: Native User-Space

www.it-ebooks.info

http://bit.ly/10qD9jM
http://bit.ly/WPzHZE
http://bit.ly/13JRrgh
http://bit.ly/10qDhzM
http://bit.ly/10qDhzM
http://www.it-ebooks.info/

The Shell Up to 2.3/Gingerbread
The standard shell used in Android in versions up to 2.3/Gingerbread is found in system/
core/sh/ in the sources, and the resulting binary is /system/bin/sh on the target. Unlike
many components in the system, this shell is one where Android doesn’t reinvent the
wheel. Instead, Android uses the NetBSD sh utility with very few tweaks. The AOSP in
fact preserves sh’s man page as is, so you can do something like this on your host to get
more information on how to use the shell:

$ man system/core/sh/sh.1

This shell is unfortunately a lot more basic than bash or BusyBox’s ash. It doesn’t, for
instance, have tab completion or color-coding of files. If for no other reason, these
limitations have been good justification for developers to include BusyBox on their
targets, at least during development. For a full comparison of Unix shells, minus Busy‐
Box, have a look at Arnaud Taddei’s Shell Choice, A shell comparison. It dates back to
1994, but it’s one of the few documents that discusses this topic. There’s also Wikipedia’s
comparison, but it’s more shallow.

Comparisons aside, here’s an overview of sh’s capabilities:

• Output redirection using > and <
• Piping using |
• Running background commands using &
• Scripting using if/then/fi, while/do/done, for/do/done, continue/break, and
case/in/pattern/esac.

• Environment variables
• Parameter expansion (${...})
• Command substitution ($(...))
• Shell patterns (*, ?, !, etc.)

Table 6-12 describes sh’s built-in commands.

Table 6-12. sh built-in commands
Command Description

alias Substitute one command for another.

bg Run a suspended task in the background.

command Run specified command; useful when a script has the same name as a built-in command.

cd Change directory.

eval Evaluate an expression.

exec Replace the running shell with the specified command.

exit Quit the shell process.

Android’s Command Line | 209

www.it-ebooks.info

http://bit.ly/YHKKGN
http://bit.ly/Yh5VfP
http://bit.ly/Yh5VfP
http://www.it-ebooks.info/

5. The change was apparently made in the 3.x series, but the sources for that version were never made available
as properly tagged branches, even though newer Android versions include that code.

Command Description

export Export an environment variable’s value for all subsequent commands.

fg Move background job to the foreground.

getopts Parse command-line options.

hash Print out location of commands in shell’s cache.

jobid Print PIDs belonging to job ID.

jobs List currently running jobs.

pwd Print working directory.

read Read a variable from the command line.

readonly Set an environment variable as read-only.

set List the environment variables currently set.

setvar Set an environment variable to a given value.

shift Shift command-line parameters upward ($1 becomes $2, etc.).

trap Execute an action when given Unix signals are received.

type Print the filesystem location of a command or an alias’s definition.

ulimit Print/set the process limits (uses sysctl()).

umask Set default file creation mode.

unalias Delete a given alias.

unset Delete a given environment variable.

wait Wait for a given job to complete.

If you’re using any Android version up to 2.3/Gingerbread, I encourage you to look at
sh’s man page for more information on how to use each of its features. You’ll also be
able to benefit from the plethora of online examples and tutorials on Unix shell scripting.
None of these aspects is unique to Android or the use of sh in an embedded setting.

The Shell Since 4.0/Ice-Cream Sandwich
Starting with 4.0/Ice-Cream Sandwich,5 Android now relies on the MirBSD Korn
Shell. It’s found in the external/mksh/ directory in the host, and the binary
is /system/bin/mksh on the target.

210 | Chapter 6: Native User-Space

www.it-ebooks.info

https://www.mirbsd.org/mksh.htm
https://www.mirbsd.org/mksh.htm
http://www.it-ebooks.info/

Even though mksh was included in AOSP versions before 4.2/Jelly Bean,
it was disabled when building for the emulator. There is a TAR
GET_SHELL configuration variable in the build system that is set by de‐
fault to mksh. However, a board config can change the default to what‐
ever is appropriate for that board. Prior to 4.2/Jelly Bean, this variable
was set to ash, which is the new name of the executable that replaces
the sh command described in the previous section.

mksh is a lot more powerful than sh. It includes tab completion, for instance, though it
doesn’t support color-coding of files, and has bash/ksh93/zsh-like extensions. It also has
a man page that you can check on the host by typing:

$ man system/external/mksh/src/mksh.1

Given that mksh has a lot more features and built-in commands than sh, it would be
difficult to give it proper coverage in this book. Instead, I encourage you to look at its
man page and its website for more information. It includes, for instance, an implemen‐
tation for the very useful history command, which lists the previous commands you
typed on the shell.

Toolbox
Like any other Linux-based system, Android’s shell provides only the bare minimum
required to have a functional command line. The rest of the functionality comes from
individual tools providing specific capabilities that can be started individually from the
shell. As we discussed in Chapter 2, the package that provides these tools in Android is
called Toolbox, and it’s distributed under the BSD license. Toolbox is in system/core/
toolbox/ in the AOSP. The resulting binary and the symbolic links to it reside in /system/
bin on the actual target.

Unfortunately, in addition to not being as feature-rich as BusyBox, Toolbox also severely
lacks in documentation. Fortunately, the majority of the commands it provides already
exist, albeit in more feature-full form, on the standard Linux desktop. Hence, you can
use your development machine’s man pages as a primer for using the equivalent Toolbox
commands. Beware, as some of the Toolbox variants have slightly different command-
line semantics from their standard Linux brethren.

In some cases, this is easy to figure out, as the command will print out its usage if you
pass it the wrong type of parameters. However, not all Toolbox commands provide
online help. In some cases, you’ll even have to dig into Toolbox’s sources to figure out
exactly how the command’s parameters are processed and what the command actually
does.

Android’s Command Line | 211

www.it-ebooks.info

http://www.it-ebooks.info/

Common Linux commands

Table 6-13 lists the common Linux commands found in Toolbox. If your favorite com‐
mand isn’t in this list, I suggest you check BusyBox—it’s likely in there. We’ll discuss in
Appendix A how to get BusyBox to sit side by side with Toolbox in the same filesystem.
If even BusyBox doesn’t include the utility you’re looking for, then you can compile the
full Linux utility for Android, possibly by importing it into the AOSP external/ directory
and deriving an Android.mk for it based on its existing build scripts or makefiles.

For the sake of brevity, I’m omitting the full list of command parameters
in Table 6-13 for each command. Have a look at the Linux man pages
to get an idea of what they likely are.

Table 6-13. Toolbox’s common Linux commands
Command Description

cat Dump the contents of a given file to the standard output

chmod Change the access rights on a file or a directory

chown Change the ownership of a file or a directory

cmp Compare two files

date Print out the current date and time

dd Copy a file while converting and formatting the content

df Print the filesystems’ disk usage

dmesg Dump the kernel’s log buffer

hd Dump a file in hexadecimal format

id Print the current user and group IDs

ifconfig Configure a networking interface

iftop Monitor the networking traffic in real-time

insmod Load a kernel module

ionice Get/set the I/O priority of a process

ln Create a symbolic link

kill Send the TERM signal to a process

ls List a directory’s contents

lsmod List the currently loaded kernel modules

lsof List the currently open file descriptors

mkdir Create a directory

mount Print the list of mounted filesystems or mount new ones

mv Rename a file

netstat Print network statistics

212 | Chapter 6: Native User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

Command Description

printenv Print all environment variables exported

ps Print running processes

reboot Reboot the system

renice Change a process’s “nice” value

rm Delete a file

rmdir Delete a directory

rmmod Remove a kernel module

route Print/modify the kernel’s routing table

sleep Sleep for a given number of seconds

sync Flush the filesystem cache back to persistent storage

top Monitor processes in real time

umount Unmount a filesystem

uptime Print the system’s uptime

vmstat Print out the system’s memory use

A few of these are downright annoying in their shortcomings. For example, until 4.0/
Ice-Cream, ls was unable to print directory listings in alphabetical order or provide
color-coding for files, which is standard in most Linux systems. Alphabetical ordering
has since been added, but not color-coding. Also, contrary to its typical Linux or Busy‐
Box version, ifconfig doesn’t actually print out the current network configuration if
invoked without any parameters—you have to use netcfg instead. Table 6-14 lists addi‐
tional Linux commands you’ll find in 4.2/Jelly Bean.

Table 6-14. Additional common Linux commands found in 4.2/Jelly Bean
Command Description

cp Copy files

du Show file-space usage

grep Look for strings in files

md5 Like md5sum command in Linux, compute files’ MD5 checksum

touch Update a file’s timestamp (and create it if it doesn’t exist)

Global properties

Chapter 2 explained that one of Android’s init features is that it maintains a set of global
properties that can be accessed from anywhere in the system. Naturally, Toolbox pro‐
vides a few tools to interface with these global properties:

getprop <key>
setprop <key> <value>
watchprops

Android’s Command Line | 213

www.it-ebooks.info

http://www.it-ebooks.info/

The first thing you’ll likely want to do is list all the properties with their current values:
getprop
[ro.ril.wake_lock_timeout]: [0]
[ro.secure]: [0]
[ro.allow.mock.location]: [1]
[ro.debuggable]: [1]
[persist.service.adb.enable]: [1]
[ro.factorytest]: [0]
[ro.serialno]: []
[ro.bootmode]: [unknown]
[ro.baseband]: [unknown]
[ro.carrier]: [unknown]
[ro.bootloader]: [unknown]
[ro.hardware]: [am335xevm]
[ro.revision]: [0]
[ro.build.id]: [GRJ22]
[ro.build.display.id]: [beaglebone-eng 2.3.4 GRJ22 eng.karim.20120504.160548
 test-keys]
[ro.build.version.incremental]: [eng.karim.20120504.160548]
[ro.build.version.sdk]: [10]
...

It should print out over 100, if not a lot more, global properties set for your system. If
you just want to print out a single value, you can do this:

getprop ro.hardware
am335xevm

You can also set global properties straight from the command line:
setprop acme.birdradar.enable 1
getprop acme.birdradar.enable
1

Once a property has been set, you can change its value again using setprop. You can’t,
however, delete a property that you “created” using setprop. The property will, however,
disappear at the next reboot unless its name starts with persist. In that case, a file with
the property’s full name will be created in /data/property containing the property’s value.
To delete this property, you would need to delete this file or destroy the data partition.

You can also monitor properties being changed in real-time—assuming the acme.bird
radar.enable is set after watchprop is started:

watchprops
 946709853 acme.birdradar.enable = '1'

Input events

Android relies heavily on Linux’s input layer to get the user’s input events. The devices
that expose Linux’s input layer are available through entries in /dev/input which, as we
saw in Chapter 2, is the basis of Android’s input support. Whenever the user touches or

214 | Chapter 6: Native User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

swipes the screen or touches any of the device’s buttons, an event is generated. While
Android’s System Server already handles those events appropriately, you might want to
either observe or generate your own events. Toolbox lets you do just that:

getevent [-t] [-n] [-s <switchmask>] [-S] [-v [<mask>]] [-p] [-q] [-c <count>]
[-r][<device>]
 -t: show time stamps
 -n: don't print newlines
 -s: print switch states for given bits
 -S: print all switch states
 -v: verbosity mask (errs=1, dev=2, name=4, info=8, vers=16, pos. events=32)
 -p: show possible events (errs, dev, name, pos. events)
 -q: quiet (clear verbosity mask)
 -c: print given number of events then exit
 -r: print rate events are received
sendevent <device> <type> <code> <value>

To observe the events, you can do something like this:
getevent
/dev/input/event0: 0003 0000 0000007d
/dev/input/event0: 0003 0001 0000011b
/dev/input/event0: 0001 014a 00000001
/dev/input/event0: 0000 0000 00000000
/dev/input/event0: 0001 014a 00000000
/dev/input/event0: 0000 0000 00000000
/dev/input/event0: 0001 0066 00000001
/dev/input/event0: 0001 0066 00000000
...

getevent continuously displays events as they come in until you type Ctrl-C. The output
format is event type, event code, and event value. This lets you verify whether your
driver is reporting the appropriate information back to Android.

In a similar fashion, if you’d like to monitor Android’s handling of events, you can send
events of your own:

sendevent /dev/input/event0 1 330 1

Note that if you were running getevent simultaneously, you would then see this new
event:

/dev/input/event0: 0001 014a 00000001

In other words, while getevent’s output is hexadecimal, sendevent’s input is decimal.

Controlling services

As we saw in Chapter 2, Android’s init starts a number of native daemons for a variety
of purposes. Typically, these are described as services in init’s configuration scripts—
init’s “services” have nothing to do with either system services or the service components
available to app developers. As we’ll see shortly, such services can be either started

Android’s Command Line | 215

www.it-ebooks.info

http://www.it-ebooks.info/

automatically or marked as disabled. Either way, you can start and stop services using
the following:

start <servicename>
stop <servicename>

Neither of these generates any output. There’s also unfortunately no way to ask Android
for the list of running services. Instead, you’re assumed to understand init’s configura‐
tion scripts enough to know which services you can start and stop. For instance, if you
want to stop all the system’s Java components, you can do this:

stop zygote

Note that this specific command is a pretty drastic measure, as it will stop all apps and
kill the System Server. But in some cases it might be exactly what you’re looking for. Say
you wanted to stop a system service from accessing a given driver because it stopped
operating properly, and you want to run some diagnostics on it without the system
continuing to use it.

We’ll cover Android’s init and its handling of services in the next section.

Logging

Another interesting Toolbox feature is its ability to allow you to add your own events
to Android’s logger:

log [-p <prioritychar>] [-t <tag>] <message>
prioritychar should be one of:
v,d,i,w,e

For example:
log -p i -t ACME Initiating bird tracking sequence

Now, if you check the logs with logcat, you see this:
logcat
...
I/ACME (336): Initiating bird tracking sequence
...

This can be very useful if you have shell scripts that execute alongside the rest of the
Android stack. Also, if you’ve got custom code using Android’s logging capabilities, say
within an app or a custom system service, you’ll be able to see the relative ordering of
the events generated there and those generated from scripts or manually on the com‐
mand line.

ioctl

As we discussed in Chapter 2, devices appear as entries in /dev. If you are familiar with
Linux’s driver model, you know that if a device is controlled by a character device driver,

216 | Chapter 6: Native User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

then simply opening that device’s entry in /dev and reading/writing from/to it will result
in its read()/write() functions getting invoked. So you can do something like this to
read from a character device:

cat /dev/birdlocator0

Similarly, you can do something like this to write to a character device:
echo "Fire" > /dev/birdlaser0

Another very important file operation available on character devices is ioctl(). There
is, however, no standard Linux utility for invoking this operation, since it’s driver-
specific. On embedded systems, however, where those manipulating the system are
typically either the driver authors themselves or working with them very closely, it makes
sense to have a utility to enable developers to invoke drivers’ ioctl() functions. And
Toolbox provides just that:

ioctl [-l <length>] [-a <argsize>] [-rdh] <device> <ioctlnr>
 -l <length> Length of io buffer
 -a <argsize> Size of each argument (1-8)
 -r Open device in read only mode
 -d Direct argument (no iobuffer)
 -h Print help

Obviously the use you make of this will be highly driver-specific. You’ll need to refer to
your driver’s documentation and/or sources to know exactly the parameters you need
to pass to this command and what effects they’ll have.

ioctl() is a very powerful driver operation. Uses can go from benign
status reporting to outright hardware destruction. Make sure you know
exactly what the specific I/O control operation you’re about to issue
does on the designated device. You probably want to use it only on
drivers you wrote.

Wiping the device

In some extreme cases, it’s necessary to destroy data on an Android device. This extreme
and irreversible operation is made possible using Toolbox’s wipe command:

wipe <system|data|all>

system means '/system'
data means '/data'

If you need to destroy all data on a system, you can do this:
wipe data
Wiping /data
Done wiping /data

Android’s Command Line | 217

www.it-ebooks.info

http://www.it-ebooks.info/

I’m sure you understand there’s no “undo” here, so be careful with this. You might want
to use this as a failsafe in case you have sensitive data or binaries on the device and, for
instance, destroy it in case you detect unauthorized access to key system parts.

Other Android-specific commands

Toolbox also includes a few other Android-specific commands, which we’ll review
briefly, since their uses are either obvious or very limited.

nandread. This utility is for reading the contents of a NAND flash device to a file:

nandread [-d <dev>] [-f <file>] [-s <size>] [-vh]
 -d <dev> Read from <dev>
 -f <file> Write to <file>
 -s <size> Number of spare bytes in file (default 64)
 -R Raw mode
 -S <start> Start offset (default 0)
 -L <len> Length (default 0)
 -v Print info
 -h Print help

newfs_msdos. This command allows you to format a device as a VFAT filesystem:

newfs_msdos [-options] <device> [<disktype>]
where the options are:
-@ create file system at specified offset
-B get bootstrap from file
-C create image file with specified size
-F FAT type (12, 16, or 32)
-I volume ID
-L volume label
-N don't create file system: just print out parameters
-O OEM string
-S bytes/sector
-a sectors/FAT
-b block size
-c sectors/cluster
-e root directory entries
-f standard format
-h drive heads
-i file system info sector
-k backup boot sector
-m media descriptor
-n number of FATs
-o hidden sectors
-r reserved sectors
-s file system size (sectors)
-u sectors/track

newfs_msdos is the tool used by the vold daemon to format devices for VFAT; vold being
itself used by the Mount system service for managing mounted devices.

218 | Chapter 6: Native User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

notify. This command uses the inotify system call an API to monitor directories or
files for modifications:

notify [-m <eventmask>] [-c <count>] [-p] [-v <verbosity>] <path> [<path> ...]

r. In 4.2/Jelly Bean, you’ll also find an r command. It’s shorthand for repeating the
previous command you typed on the shell. So, instead of pressing the up arrow and then
Enter, you can just type r. Here’s a simple example:

root@android:/ # ls -l /proc/cpuinfo
-r--r--r-- root root 0 2013-01-19 10:34 cpuinfo
root@android:/ # r
ls -l /proc/cpuinfo
-r--r--r-- root root 0 2013-01-19 10:34 cpuinfo

schedtop. Like top, schedtop is for continuous, real-time monitoring of the kernel’s
scheduler. Unlike top, which only reports the real-time CPU usage percentage for each
process, this command continuously reports on the cumulative execution time of each
process:

schedtop [-d <delay>] [-bitamun]
 -d refresh every <delay> seconds
 -b batch - continuous prints instead of refresh
 -i hide idle tasks
 -t show threads
 -a use alternate screen
 -m use millisecond precision
 -u use microsecond precision
 -n use nanosecond precision

The command description given here stems from my reading of Tool‐
box’s sources. schedtop itself doesn’t provide any online help, nor is there
any documentation on its use.

setconsole. This command lets you switch consoles:

setconsole [-d <dev>] [-v <vc>] [-gtncpoh]
 -d <dev> Use <dev> instead of /dev/tty0
 -v <vc> Switch to virtual console <vc>
 -g Switch to graphics mode
 -t Switch to text mode
 -n Create and switch to new virtual console
 -c Close unused virtual consoles
 -p Print new virtual console
 -o Print old virtual console
 -h Print help

Android’s Command Line | 219

www.it-ebooks.info

http://www.it-ebooks.info/

smd. Of all of Toolbox’s commands, this one is the most “mysterious.” I had a very hard
time finding any useful information about the use of smd or actual usage examples. It
appears that under certain devices, the Baseband Processor appears as one of /dev/
smdN. This tool then allows you to send AT commands to the Baseband Processor:

smd [<port>] <commands>

Core Native Utilities and Daemons
As I mentioned in Chapter 2, Android has about 150 utilities spread around its filesys‐
tem. In this chapter, we’ll cover those used independent of the Java framework and
services. Specifically, we’ll focus in this section mostly on those in /system/bin, which
we could consider core to Android. Some utilities are also found in /system/xbin, but
they aren’t essential for the system to operate properly.

We already saw how Toolbox implements a lot of functionality commonly found in
standard Linux systems, as well as Android-specific functionality. Similarly, there are
two categories of core Android utilities and daemons, some which are derived from
external projects and others that are Android specific. Table 6-15 presents a number of
core utilities and daemons that are compiled from projects in the external/ directory.

Table 6-15. Core utilities and daemons from external projects
Utility/Daemon External Project Original Location

bluetoothd, sdptool, avinfo, hciconfig,
hctitool, l2ping, hciattach and
rfcomm.

BlueZa http://www.bluez.org/

dbus-daemon D-Bus http://dbus.freedesktop.org

dnsmasq Dnsmasq http://www.thekelleys.org.uk/dnsmasq/

dhcpcd and showlease dhcpcd http://roy.marples.name/projects/dhcpcd/

fsck_msdos NetBSD fsck_msdos http://cvsweb.netbsd.org/bsdweb.cgi/src/sbin/fsck_msdos/

gdbserver GNU Debugger http://www.gnu.org/software/gdb/

gzip gzip utility http://www.gzip.org/

iptables Netfilter http://www.netfilter.org/

ping iputils http://www.skbuff.net/iputils/

pppd PPP http://ppp.samba.org/

racoon IPsec-Tools http://ipsec-tools.sourceforge.net/

tc iproute2 http://www.linuxfoundation.org/collaborate/workgroups/network
ing/iproute2

wpa_supplicant and wpa_cli WPA Supplicant http://hostap.epitest.fi/wpa_supplicant/
a No longer part of Android starting with 4.2/Jelly Bean.

220 | Chapter 6: Native User-Space

www.it-ebooks.info

http://www.bluez.org/
http://dbus.freedesktop.org
http://www.thekelleys.org.uk/dnsmasq/
http://roy.marples.name/projects/dhcpcd/
http://cvsweb.netbsd.org/bsdweb.cgi/src/sbin/fsck_msdos/
http://www.gnu.org/software/gdb/
http://www.gzip.org/
http://www.netfilter.org/
http://www.skbuff.net/iputils/
http://ppp.samba.org/
http://ipsec-tools.sourceforge.net/
http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2
http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2
http://hostap.epitest.fi/wpa_supplicant/
http://www.it-ebooks.info/

Not all of these are actually necessary for your system to run. If your embedded system
doesn’t have WiFi or Bluetooth support, for instance, then there’s no need to have either
wpa_supplicant or any of the BlueZ utilities and daemons. In fact, in those specific cases,
the binary isn’t built unless the board-specific .mk files require it. Remember that BlueZ
has been replaced with another stack in 4.2/Jelly Bean.

The following subsections look at the core Android-specific utilities and daemons.
Many of these aren’t actually meant to be invoked by you directly on the command line
but are automatically invoked instead by one part of the system or another. Some, how‐
ever, are worth mastering.

logcat

Probably one of the commands you’ll use most often in Android, logcat allows you to
dump the Android logger’s buffer as we saw earlier while covering adb. Here’s logcat’s
full online help:

logcat --help
Usage: logcat [options] [filterspecs]
options include:
 -s Set default filter to silent.
 Like specifying filterspec '*:s'
 -f <filename> Log to file. Default to stdout
 -r [<kbytes>] Rotate log every kbytes. (16 if unspecified). Requires -f
 -n <count> Sets max number of rotated logs to <count>, default 4
 -v <format> Sets the log print format, where <format> is one of:

 brief process tag thread raw time threadtime long

 -c clear (flush) the entire log and exit
 -d dump the log and then exit (don't block)
 -t <count> print only the most recent <count> lines (implies -d)
 -g get the size of the log's ring buffer and exit
 -b <buffer> request alternate ring buffer
 ('main' (default), 'radio', 'events')
 -B output the log in binary
filterspecs are a series of
 <tag>[:priority]

where <tag> is a log component tag (or * for all) and priority is:
 V Verbose
 D Debug
 I Info
 W Warn
 E Error
 F Fatal
 S Silent (supress all output)

'*' means '*:d' and <tag> by itself means <tag>:v

Android’s Command Line | 221

www.it-ebooks.info

http://www.it-ebooks.info/

If not specified on the commandline, filterspec is set from ANDROID_LOG_TAGS.
If no filterspec is found, filter defaults to '*:I'

If not specified with -v, format is set from ANDROID_PRINTF_LOG
or defaults to "brief"

You should be able to figure out most of logcat’s intricacies using this help and Chap‐
ter 2’s explanations of the Android logger. You can use the -b flag, for instance, to select
which buffer you’d like to dump—main being the default. You can also set the AN
DROID_LOG_TAGS environment variable to provide a default output filter. Still, a more
confusing aspect of logcat is specifically its filtering capabilities. Indeed, the online help
seems to indicate that just specifiying a <tag>[:priority] after the command is suf‐
ficient to limit the output to that belonging to tag. That doesn’t work, though:

logcat ActivityManager
--------- beginning of /dev/log/main
I/DEBUG (59): debuggerd: Mar 27 2012 05:30:39
--------- beginning of /dev/log/system
I/Vold (57): Vold 2.1 (the revenge) firing up
D/Vold (57): USB mass storage support is not enabled in the kernel
D/Vold (57): usb_configuration switch is not enabled in the kernel
D/Vold (57): Volume sdcard state changing -1 (Initializing) -> 0 (No-Media
)
D/Vold (57): Volume usb state changing -1 (Initializing) -> 0 (No-Media)
D/Vold (57): Volume sdcard state changing 0 (No-Media) -> 2 (Pending)
D/Vold (57): Volume sdcard state changing 2 (Pending) -> 1 (Idle-Unmounted
)
I/Netd (58): Netd 1.0 starting
D/AndroidRuntime(61):
D/AndroidRuntime(61): >>>>>> AndroidRuntime START com.android.internal.os.Zyg
oteInit <<<<<<
D/AndroidRuntime(61): CheckJNI is ON
D/dalvikvm(61): creating instr width table
...

Obviously, we’re seeing the output from all tags, not just the one matching Activity
Manager. The trick is to use the -s flag:

logcat -s ActivityManager
--------- beginning of /dev/log/main
--------- beginning of /dev/log/system
I/ActivityManager(128): Memory class: 16
I/ActivityManager(128): Config changed: { scale=1.0 imsi=0/0 loc=md_US touch=1
 keys=1/1/2 nav=1/1 orien=2 layout=268435491 uiMode=0 seq=1}
I/ActivityManager(128): System now ready
I/ActivityManager(128): Start proc com.android.systemui for service com.androi
d.systemui/.statusbar.StatusBarService: pid=245 uid=1000 gids={3002, 3001, 3003}
I/ActivityManager(128): Config changed: { scale=1.0 imsi=0/0 loc=md_US touch=1
 keys=1/1/2 nav=1/1 orien=2 layout=268435491 uiMode=17 seq=2}
I/ActivityManager(128): Start proc com.android.inputmethod.latin for service c
om.android.inputmethod.latin/.LatinIME: pid=247 uid=10016 gids={}
W/ActivityManager(128): Unable to start service Intent { act=@0 }: not found

222 | Chapter 6: Native User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

6. Unlike typical Unix domain sockets, which appear as entries in the filesystem, abstract sockets are not visible
on the filesystem.

W/ActivityManager(128): Unable to start service Intent { act=@0 }: not found
...

logcat’s online help is unfortunately not very helpful in figuring this out.

netcfg

In addition to Toolbox’s ifconfig, Android has another utility that lets you manipulate
network interfaces:

netcfg [<interface> {dhcp|up|down}]

Confusingly, netcfg and ifconfig have overlapping functionality. Both can, for example,
bring interfaces up and down. However, netcfg can initiate DHCP client requests and
print out the current interface’s configuration, while ifconfig can do neither. ifconfig, on
the other hand, can set an interface’s static IP address and its netmask, while netcfg can’t
do that.

Mostly, netcfg is very useful for printing out the interfaces’ configurations:
netcfg
lo UP 127.0.0.1 255.0.0.0 0x00000049
eth0 UP 10.0.2.15 255.255.255.0 0x00001043
tunl0 DOWN 0.0.0.0 0.0.0.0 0x00000080
gre0 DOWN 0.0.0.0 0.0.0.0 0x00000080

debuggerd

This daemon is actually started by init early during startup. It opens the android:de
buggerd abstract Unix domain socket6 and awaits connections. It remains dormant until
a user-space process crashes. It’s activated by Bionic’s linker, which sets up signal han‐
dlers for dealing with crashes and connects to debuggerd whenever that happens. de‐
buggerd then does two things: creates a tombstone file in /data/tombstones and, if re‐
quired, allows postmortem debugging to be done through gdbserver.

You don’t need to do anything special for tombstone files to be generated. They’ll be
created automatically and will contain information about the crashing process that you
might find useful for postmortem analysis. Here’s one from the frequently crashing VNC
server on my BeagleBone:

cat /data/tombstones/tombstone_06
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
Build fingerprint: 'TI/beaglebone/beaglebone:2.3.4/GRJ22/eng.karim.20120504.1605
48:eng/test-keys'
pid: 4656, tid: 4656 >>> androidvncserver <<<
signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr deadbaad
 r0 00000027 r1 deadbaad r2 a0000000 r3 00000000

Android’s Command Line | 223

www.it-ebooks.info

http://www.it-ebooks.info/

 r4 00000001 r5 00000000 r6 00069ad8 r7 0005e000
 r8 00069cd8 r9 00000000 10 000003e8 fp 00000001
 ip afd46668 sp beeb4bd0 lr afd191d9 pc afd15ca4 cpsr 60000030
 d0 2e302e302e373220 d1 206f742074636567
 d2 000000000000006f d3 000000000000006e
...
 #00 pc 00015ca4 /system/lib/libc.so
 #01 pc 00013614 /system/lib/libc.so
 #02 pc 000144da /system/lib/libc.so
 #03 pc 00010290 /system/bin/androidvncserver
 #04 pc 00010296 /system/bin/androidvncserver
 #05 pc 0000fcbe /system/bin/androidvncserver
 #06 pc 0000bc66 /system/bin/androidvncserver
 #07 pc 0000a87e /system/bin/androidvncserver
 #08 pc 00014b52 /system/lib/libc.so

code around pc:
afd15c84 2c006824 e028d1fb b13368db c064f8df
afd15c94 44fc2401 4000f8cc 49124798 25002027
afd15ca4 f7f57008 2106ec7c edd8f7f6 460aa901
afd15cb4 f04f2006 95015380 95029303 e93ef7f6
afd15cc4 462aa905 f7f62002 f7f5e94a 2106ec68

code around lr:
afd191b8 4a0e4b0d e92d447b 589c41f0 26004680
afd191c8 686768a5 f9b5e006 b113300c 47c04628
afd191d8 35544306 37fff117 6824d5f5 d1ef2c00
afd191e8 e8bd4630 bf0081f0 00028344 ffffff88
afd191f8 b086b570 f602fb01 9004460c a804a901

stack:
 beeb4b90 0005e008
 beeb4b94 6f000001
 beeb4b98 6f2e6772
 beeb4b9c 7069616e
 beeb4ba0 afd4270c
 beeb4ba4 afd426b8
 beeb4ba8 00000000
 beeb4bac afd191d9 /system/lib/libc.so
...

Also, if you set the debug.db.uid to some UID larger than that of the crashing process
(just use a large integer value such as 32767 [2^15 - 1]), debuggerd will then use the
ptrace() system call to attach to the dying process and allow you to start gdbserver to
take control of it. Here’s the output printed out by debuggerd to the log when I do that
on my BeagleBone:

I/DEBUG (59): **
I/DEBUG (59): * Process 4656 has been suspended while crashing. To
I/DEBUG (59): * attach gdbserver for a gdb connection on port 5039:
I/DEBUG (59): *
I/DEBUG (59): * adb shell gdbserver :5039 --attach 4656 &

224 | Chapter 6: Native User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

I/DEBUG (59): *
I/DEBUG (59): * Press HOME key to let the process continue crashing.
I/DEBUG (59): **

Once gdbserver is attached to the dying process, you can then use one of the arm-eabi-
gdb debuggers that are part of the AOSP’s prebuilt/ directory to attach to the gdbserv‐
er running on the target and proceed with debugging the dying process.

Other Android-specific core utilities and daemons

There are also a few other core utilities and daemons you should know about, though
you’re unlikely to use these very often.

check_prereq. This allows you to check whether the currently running build is older
than a given timestamp:

check_prereq 1336847591
current build time: [1336162137] new build time: [1336847591]

This is mainly useful for upgrading purposes, allowing you to invoke this command
from adb to check whether your current builder is older or newer than the one running
on your device. The build time is stored in the build.prop file found in the system/
partition in the ro.build.date.utc global property.

linker. This is Bionic’s dynamic linker. You never need to invoke this manually. It is
automatically loaded whenever a Bionic-linked binary is executed, and its job is to load
all the libraries required by that binary. The readelf utility part of the GNU toolchain
provides some more insight as to what occurs during this process:

$ arm-eabi-readelf -a logcat
ELF Header:
 Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
 Class: ELF32
 Data: 2's complement, little endian
 Version: 1 (current)
 OS/ABI: UNIX - System V
 ABI Version: 0
 Type: EXEC (Executable file)
 Machine: ARM
 Version: 0x1
 Entry point address: 0x8ed0
 Start of program headers: 52 (bytes into file)
 Start of section headers: 13020 (bytes into file)
 Flags: 0x5000000, Version5 EABI
 Size of this header: 52 (bytes)
 Size of program headers: 32 (bytes)
...
Program Headers:
 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
 PHDR 0x000034 0x00008034 0x00008034 0x000e0 0x000e0 R 0x4

Android’s Command Line | 225

www.it-ebooks.info

http://www.it-ebooks.info/

 INTERP 0x000114 0x00008114 0x00008114 0x00013 0x00013 R 0x1
 [Requesting program interpreter: /system/bin/linker]
 LOAD 0x000000 0x00008000 0x00008000 0x02470 0x02470 R E 0x1000
 LOAD 0x003000 0x0000b000 0x0000b000 0x001cc 0x00608 RW 0x1000
 DYNAMIC 0x003020 0x0000b020 0x0000b020 0x000c8 0x000c8 RW 0x4
 GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0
 EXIDX 0x002410 0x0000a410 0x0000a410 0x00060 0x00060 R 0x4
...
Dynamic section at offset 0x3020 contains 25 entries:
 Tag Type Name/Value
 0x00000003 (PLTGOT) 0xb0fc
 0x00000002 (PLTRELSZ) 376 (bytes)
...
 0x00000001 (NEEDED) Shared library: [liblog.so]
 0x00000001 (NEEDED) Shared library: [libc.so]
 0x00000001 (NEEDED) Shared library: [libstdc++.so]
 0x00000001 (NEEDED) Shared library: [libm.so]
...

This is the linker required by the binary.
These are the libraries that must be loaded by the linker.

There’s of course a lot more output to readelf than the above, but this shows you that
logcat’s “program interpreter” is /system/bin/linker and that it needs the following li‐
braries: liblog.so, libc.so, libstdc++.so, and libm.so.

logwrapper. This command allows you to run another command and redirect its stdout
and stderr to the Android logger:

logwrapper [-x] <binary> [<args> ...]

The log tag used in this case is the same string as the binary’s name. Using the -x option
causes logwrapper to generate a segmentation fault (SIGSEGV) when binary terminates,
with the fault address being the status returned by the wait() system call on the existing
binary.

run-as. Allows you to run a binary as if it were executed with the rights associated with
an app package:

run-as <package-name> <command> [<args>]

The command will run from the directory associated with package-name in /data/
data with that app’s UID/GID.

226 | Chapter 6: Native User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

sdcard utility. This utility uses Linux’s Filesystem in User SpacE (FUSE) to emulate in
any directory on the filesystem the rights and permissions you’d find on any FAT-
formatted SD card:

sdcard <path> <uid> <gid>

In other words, files and directories in the designated directory will all be executable,
as you’d expect in FAT. The directory provided as path will be mounted to /mnt/
sdcard. And while sdcard must be issued as root, it’ll run as uid/gid. This is useful for
devices that don’t actually have a removable SD card. In those cases, the “external”
storage is emulated on the “internal” storage using the sdcard command.

Extra Native Utilities and Daemons
Android also packs a certain number of extra utilities and daemons that aren’t essential
to the system’s operation. Most of these are in /system/xbin, and they may, in some
circumstances, be useful to you. Tables 6-16 and 6-17 list those utilities and daemons.

Table 6-16. Extra utilities and daemons from external projects
Utility/Daemon External Project Original Location

dbus-monitor and dbus-send D-Bus http://dbus.freedesktop.org

ssh and scp Dropbear http://matt.ucc.asn.au/dropbear/

nc Netcat http://nc110.sourceforge.net/

skia_text skia 2D graphics library http://code.google.com/p/skia/

sqlite3 SQLite http://www.sqlite.org/

strace strace utility http://sourceforge.net/projects/strace/

tcpdump tcpdump utility http://www.tcpdump.org/

netperf and netserver netperf http://www.netperf.org/netperf/

oprofiled and opcontrol OProfile http://oprofile.sourceforge.net/

Table 6-17. Extra Android-specific utilities and daemons
Utility/Daemon Description

cpueater and
daemonize

cpueater does a while(1) loop, eating as much CPU as possible, and daemonize allows you to run it as
a daemon in the background.

crasher This utility is packaged with debuggerd and essentially simulates a crashing process.

directiotest Provided with a block device’s mount, does write/readback tests on the block device to test it.

latencytop Provides per-process latency information.

librank Prints memory usage information for each object mapped into any process’s memory. This includes
libraries and memory-mapped devices and regions.

procmem Prints memory usage information for each section of a running PID.

procrank Ranks processes by memory used.

Android’s Command Line | 227

www.it-ebooks.info

http://dbus.freedesktop.org
http://matt.ucc.asn.au/dropbear/
http://nc110.sourceforge.net/
http://code.google.com/p/skia/
http://www.sqlite.org/
http://sourceforge.net/projects/strace/
http://www.tcpdump.org/
http://www.netperf.org/netperf/
http://oprofile.sourceforge.net/
http://www.it-ebooks.info/

Utility/Daemon Description

schedtest Tests the scheduler to see how reliable it is at promptly waking up tasks that request 1ms sleeps.

showmap Prints out a process’s memory map.

showslab Prints out information on the slab allocator.

su Allows the root user to change his UID/GID.

timeinfo Reports realtime, uptime, awake percentage, and sleep percentage to the standard output.

Framework Utilities and Daemons
In addition to the utilities and daemons just covered, Android contains quite a number
of others that are tightly tied to the system services and Android Framework, such as
servicemanager, installd, and dumpsys. We’ll discuss those in the next chapter.

Init
One of the most important tasks in the system is initializing the user-space environment
once the kernel has finished initializing device drivers and its own internal structures.
As we discussed in Chapter 2, this is the init process’s job once it’s started by the kernel.
And, as we discussed then, Android has its own custom init, with its own specific fea‐
tures. Now that we’ve covered a good part of what’s available in the native user-space
once the system is up, let’s take a closer look at the process that’s responsible for starting
it all.

Theory of Operation
Figure 6-4 illustrates how init integrates with the rest of the Android components. After
getting started by the kernel, it essentially reads its configuration files, prints out a boot
logo or text to the screen, opens a socket for its property service, and starts all the
daemons and services that bring up the entire Android user-space. There’s of course
more to each of these steps.

Android init versus “Normal” init
In a typical Linux system, init’s role would be limited to starting daemons, but, if only
because of its property service, Android’s init is special. Like any Linux init, however,
Android’s init isn’t expected to ever die. init is, as we discussed earlier, the first process
started by the kernel and, as such, its PID is always 1. Should it ever die, the kernel would
panic.

228 | Chapter 6: Native User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 6-4. Android’s init

One of the first things init does is check whether it was invoked as ueventd. As I men‐
tioned in Chapter 2, init includes an implementation of the udev hotplug events handler.
Because this code is compiled within init’s own code, init checks the command-line that
was used to invoke it, and if it was invoked through the /sbin/ueventd symbolic link
to /init, then init immediately runs as ueventd.

The next thing init does is create and mount /dev, /proc, and /sys. These directories and
their entries are crucial to many of the things init does next. init then reads the /init.rc
and /init.<device_name>.rc files, parses their content into its internal structures, and
proceeds to initialize the system based on a mix of its configuration files and built-in
rules. We’ll discuss this in much greater detail in the next subsection.

Once all initialization is done, init then enters an infinite loop in which it restarts any
services that might have exited and that need restarting, and then polls file descriptors

Init | 229

www.it-ebooks.info

http://www.it-ebooks.info/

it handles, such as the property service’s socket, for any input that needs to be processed.
This is how setprop property setting requests are serviced, for instance.

Configuration Files
The main way to control init’s behavior is through its configuration files. Given that
Android has its own init, there is much to say about those configuration files. Let’s go
over their location and semantics. Then we’ll cover the main init.rc file and board-
specific configuration files.

Location

The main location for all things init is the root directory (/). This is where you’ll find
the actual init binary itself and its two configurations files: init.rc and init.<de
vice_name>.rc. The first file’s name is fixed in stone, while the second file’s name depends
on the hardware.

In essence, the <device_name> is extracted from /proc/cpuinfo. Earlier in this chapter,
we used adb shell to dump the content of that file for the BeagleBone. In that dump,
you’ll notice a line that starts with Hardware. It’s the content of that line that is parsed
by init to retrieve the <device_name>. In the case of the BeagleBone, this is
am335xevm, and in the case of the emulator, it’s goldfish.

The string displayed beside Hardware is converted to lowercase before
the final init.<device_name>.rc is fetched from disk. Hence, though the
emulator reports Goldfish as being the hardware in /proc/cpuinfo, the
file being fetched is /init.goldfish.rc.

One very important thing to highlight is that init reads both files before it executes any
of the instructions. There is therefore little incentive for adding board-specific modifi‐
cations to the main init.rc file instead of the board-specific .rc file. Also, while the .rc
files typically have their execute permission enabled, init itself doesn’t really check for
that.

Semantics

init’s .rc files contain a series of declarations that fall in one of two types: actions and
services. Each declarative section starts with a keyword identifying the type of declara‐
tion, on for an action and service for a service, and is followed by a number of lines
with more details on the declaration:

on <trigger>
 <command>
 <command>

230 | Chapter 6: Native User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

 <command>
...
service <name> <pathname> [<argument>]*
 <option>
 <option>
 <option>
...

init’s “services” have nothing to do with system services or the service
component used by app developers.

Interestingly, there’s a readme.txt within init’s sources in the AOSP. You’ll
find it in system/core/init/. Some of the things it describes are likely to
have been initial design goals but aren’t actually in the current init, such
as the device-added and device-removed triggers. Overall, though, it
remains a good reference.

The configuration files can, of course, declare many actions and services. Typically,
actions and services are left-aligned, and the commands or options that follow are in‐
dented as shown above. Action and service declarations are similar in scope in that a
given declaration ends whenever the next on or service keyword appears. Only an
action, however, results in the execution of commands. Service declarations serve only
to describe services; they don’t actually start anything. The services are typically started
or stopped when an action is triggered.

There are two types of action triggers: predefined triggers and triggers activated on
property-value changes. init defines a fixed set of predefined triggers that are run in a
specific order. Property-activated triggers, however, are activated whenever a given
property takes on a certain value specified in the init.rc file. Here’s the list of predefined
triggers that can be used in an init configuration file:

• early-init

• init

• early-fs

• fs

• post-fs

• early-boot

• boot

The meaning of each of these triggers and the commands they consist of will become
clearer in the next section, as we look at the main init.rc file. For the time being, here’s

Init | 231

www.it-ebooks.info

http://www.it-ebooks.info/

the order in which predefined triggers and built-in actions are executed by init after
having parsed its configuration files:

1. Run early-init commands.
2. coldboot: Check that ueventd has populated /dev.
3. Initialize property service’s internal data structures.
4. Set up handler for keychords.
5. Initialize the console and display startup text or image.
6. Set up initial properties such as ro.serialno, ro.baseband, and ro.carrier.
7. Run init commands.
8. Run early-fs commands.
9. Run fs commands.

10. Run post-fs commands.
11. Start the property service.
12. Prepare to receive SIGCHLD signals.
13. Make sure that the property service socket and SIGCHLD handler are ready.
14. Run early-boot commands.
15. Run boot commands.
16. Run all property-triggered commands based on current property values.

Property-based triggers. Actions can also be taken based on property value changes:

on property:<name>=<value>

Essentially, this allows you to run a set of commands when the property called name is
set to value. A very good example of this is the default init.rc’s starting or stopping the
adbd daemon based on the toggling of the “USB debugging” checkbox in Settings:

on property:persist.service.adb.enable=1
 start adbd

on property:persist.service.adb.enable=0
 stop adbd

Action commands. After having declared a new action using the on keyword, what’s im‐
portant is what commands are actually executed as part of this action. init includes a
slew of commands as part of its lexicon. While many of these bear a strong resemblance
to their command-line equivalents and you should be able to recognize their use, some
are Android-specific. Table 6-18 lists init’s commands.

232 | Chapter 6: Native User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

Table 6-18. init’s commands in 2.3/Gingerbread
Command Description

chdir <directory> Same as cd command.

chmod <octal-mode> <path> Change path’s access permissions.

chown <owner> <group> <path> Change path’s ownership.

chroot <directory> Set process’s root directory.

class_start <serviceclass> Start all services that belong to serviceclass.

class_stop <serviceclass> Stop all services that belong to serviceclass and disable
them.

copy <path> <destination> Copy a file to destination.

domainname <name> Set the system’s domain name.

exec <path> [<argument>]* Forks and executes a program. It’s suggested to use an init
service instead, as this operation is blocking.

export <name> <value> Set environment variable name to value.

ifup <interface> Start interface up.

import <filename> Import an additional init config file to the one currently
parsed.

insmod <path> Insert a kernel module.

hostname <name> Set the system’s hostname.

loglevel <level> Set the current log level.

mkdir <path> [mode] [owner] [group] Create the path directory with the appropriate permission
and ownership.

mount <type> <device> <dir> [<mountop

tion>]*

Mount device to dir.

restart <service> Stop and then start service.

setkey <table> <index> <value> Set a keyboard entry value.

setprop <name> <value> Set property name to value.

setrlimit <resource> <cur> <max> Set the resource’s rlimit.

start <service> Start service.

stop <service> Stop service.

symlink <target> <path> Create a symbolic link.

sysclktz <mins_west_of_gmt> Set time zone.

trigger <event> Start action called event.

wait <path> Wait until a file appears in the filesystem.

write <path> <string> [<string>]* Open a file and write strings to it.

Init | 233

www.it-ebooks.info

http://www.it-ebooks.info/

Even though many of init’s commands resemble command-line equiv‐
alents from Toolbox or elsewhere, it’s important to note that only those
listed in Table 6-18 are recognized. init will not attempt to issue com‐
mands to the command line. Commands that aren’t recognized are
simply ignored.

4.2/Jelly Bean also has a few additional commands that are recognized by init, as you
can see in Table 6-19.

Table 6-19. New init commands in 4.2/Jelly Bean
Command Description

class_reset <serviceclass> Like class_stop but doesn’t disable the services.

load_persist_props Load persistent properties.

mount_all <path> Mount all the partitions based on the information found in the path file.

restorecon <path> Restore SELinux context.

rm <path> Delete file.

rmdir <path> Delete directory.

setcon <string> Set security context (SELinux.)

setenforce <value> Enable or disable security enforcement (SELinux.)

setsebool Set SELinux Boolean.

As you can see, a number of commands have been added to support SELinux. For more
information about SEAndroid, which is an extension of the SELinux work, have a look
at the project website.

Service declarations. init refers only to service names and cannot recognize pathnames
to files in order to run processes. Therefore, any process that has to be run from a file
must first be assigned to a service. As we saw earlier, services are declared this way:

service <name> <pathname> [<argument>]*

What’s important to highlight here is that once this line is parsed, the service will be
known by init as name. The actual name of the binary that is pointed to by pathname
will itself not be recognized. One of the best examples of that is the Zygote (note that
the line is wrapped to fit the page’s width in this book):

service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start
-system-server

The actual binary being run here is app_process. Yet that’s not the service being referred
to by the rest of the main init.rc file. Instead, you’ll find references to zygote:

 onrestart restart zygote

234 | Chapter 6: Native User-Space

www.it-ebooks.info

http://selinuxproject.org/page/SEAndroid
http://www.it-ebooks.info/

Service options. Much like actions, the service declaration is often followed by a number
of lines that provide more information on the options to use for the service and how to
run it. Table 6-20 details those options.

Table 6-20. init’s service options
Option Description

class <name> This service belongs the class called name, the default class being de
fault.

console Service requires and runs on console.

critical If this service crashes five times, reboot into recovery mode.

disabled Don’t automatically start this service. It’ll need to be manually started using
start.

group <groupname> [<group

name>]*

Run this service under the given group(s).

ioprio <rt|be|idle> <ioprio 0-7> Set the service’s I/O scheduler and priority.a

keycodes <keycode> [<key

code>]*

Start the service whenever the given keycodes are activated.

oneshot Service runs only once. Service is set as disabled on exit.

onrestart <command> If the service restarts, run command.

seclabel <string> Set the service’s SELinux label; available starting in 4.1/Jelly Bean.

setenv <name> <value> Set the name environment variable before starting this service.

socket <name> <type> <perm>

[<user> [<group>]]

Create a Unix domain socket and pass its file descriptor to the process as it
starts.

user <username> Run this service as username.
a Have a look at the man page for ioprio_set() for more information.

Obviously the use of some of these is more obvious than others. Running a service under
a certain user or as part of some group should be straightforward. Running a service
based on a certain set of key combinations may be less obvious, though. Here’s an ex‐
ample of how this is used by the board-specific .rc file for the Nexus S (a.k.a. “Crespo”)
in 2.3/Gingerbread:

bugreport is triggered by holding down volume down, volume up and power
service bugreport /system/bin/dumpstate -d -v -o /sdcard/bugreports/bugreport
 disabled
 oneshot
 keycodes 114 115 116

Main init.rc

As we discussed earlier, init reads two .rc files to figure out its configuration. One of
those is provided by default for all boards within the AOSP, and you’ll find two versions

Init | 235

www.it-ebooks.info

http://www.it-ebooks.info/

of that file in Appendix D: one for 2.3/Gingerbread and the other for 4.2/Jelly Bean. I
very strongly encourage you to read through that appendix, as init.rc is the cornerstone
of a lot of the system’s behavior. If nothing else, have a look at the comments (i.e., lines
starting with #). Both default files are in fact commented well enough that you should
be able to make sense of their content fairly easily using the earlier tables as guides for
specifics.

Some of the operations conducted by init.rc are subtle but have profound repercussions
on various pieces of Android. It’s wise to bookmark the version of the file that’s relevant
to you and come back to it every so often when you’re trying to figure out one thing or
another about the system. And while default init.rc files are typically an easy read, un‐
derstanding what specific parts are doing often requires a very solid grasp of the rest of
the system and the order in which init executes actions.

Always keep in mind that the specific order of actions, commands, and
services found in the default init.rc file is crucial to the system’s opera‐
tion. You could try to craft your own init.rc from scratch, but you’d
rapidly find out that a lot of things in the system will break if the steps
in the default aren’t preserved. Some of the services, for instance, will
simply not operate properly unless the appropriate options are used to
start them. You are much better off tweaking the default init.rc provided
with your AOSP or, better yet, adding your own board-specific .rc file
if you need board-specific actions or services to be started.

Note that not all predefined actions are necessarily in use in your AOSP’s default
init.rc. Neither early-fs nor early-boot are actually used in 2.3/Gingerbread’s, for
example. You can therefore use these in your board-specific .rc file if you need to preempt
commands run in the fs or boot actions.

Board-specific .rc files

If you need to add board-specific configuration instructions for init, the best way is to
use an init.<device_name>.rc tailored to your system. What it does specifically is up to
you. However, I suggest you take a look at the board-specific .rc files that are already
part of your AOSP. Here are the files from 2.3/Gingerbread, for example:

• system/core/rootdir/etc/init.goldfish.rc
• device/htc/passion/init.mahimahi.rc
• device/samsung/crespo4g/init.herring.rc
• device/samsung/crespo/init.herring.rc

Here are the ones in 4.2/Jelly Bean:

236 | Chapter 6: Native User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

• system/core/rootdir/etc/init.goldfish.rc
• build/target/board/vbox_x86/init.vbox_x86.rc
• device/asus/tilapia/init.tilapia.rc
• device/asus/grouper/init.grouper.rc
• device/samsung/tuna/init.tuna.rc
• device/ti/panda/init.omap4pandaboard.rc
• device/lge/mako/init.mako.rc

As you’d expect, these files typically contain hardware-specific commands. Very often,
for instance, they’ll include specific mount instructions for the board. Here’s an example
from the Crespo-specific file in 2.3/Gingerbread:

on fs
 mkdir /efs 0775 radio radio
 mount yaffs2 mtd@efs /efs nosuid nodev
 chmod 770 /efs/bluetooth
 chmod 770 /efs/imei
 mount ext4 /dev/block/platform/s3c-sdhci.0/by-name/system /system wait ro
 mount ext4 /dev/block/platform/s3c-sdhci.0/by-name/userdata /data wait noati
me nosuid nodev

As you can see, this mounts /system and /data from ext4 partitions found in the onboard
eMMC. Another example is the snippet from an earlier section that showed how the
bugreport command was activated when a certain key combination was pressed on the
device.

Again, as I had mentioned earlier, init reads both its main init.rc and the board-
specific .rc file before executing any of the actions therein. Hence, by declaring a boot
action or an fs action in your board-specific file, the commands therein will be queued
up for running right after the commands found in the same action in the main config
file. They will, therefore, still run within that action. Hence, commands found in boot
actions will run after commands found in fs actions, regardless of which file either set
of commands are declared in.

Here’s, for example, an init.coyotepad.rc:

on property:acme.birdradar.enable=1
 start birdradar

service birdradar /system/vendor/bin/bradard -d /system/vendor/etc/rcalibrate.data
 user birdradar
 group birdradar
 disabled

This states that the birdradar service should be started whenever the acme.birdra
dar.enable property is set to 1. In the earlier explanation about Toolbox, we used the

Init | 237

www.it-ebooks.info

http://www.it-ebooks.info/

setprop command on the command line to set the property to 1. Had the above init.coy
otepad.rc been part of the system at startup, that previous setprop command would have
therefore resulted in bradard being started.

What about init.<device_name>.sh?
In some cases, it makes sense to have a shell script run in addition to the commands
run by init’s configuration files. The emulator, for instance, relies on a init.goldfish.sh
found in /system/etc. Despite the name of the file, init itself doesn’t recognize such scripts
and has no code that looks for them. Instead, board-specific .rc files can be made to run
shell scripts like they’d run any other service. Here’s how init.goldfish.rc gets init.gold
fish.sh to be executed:

service goldfish-setup /system/etc/init.goldfish.sh
 oneshot

In this specific case, the shell script runs commands that are available on the shell but
aren’t part of init’s lexicon. And that is in fact a very good reason for having a shell script
such as this if you need one.

Global Properties
Though I’ve mentioned global properties a number of times already, we’ve yet to take a
deeper look at that aspect of Android. As I hinted at earlier, global properties are an
important part of Android’s overall architecture. As a somewhat distant cousin of the
infamous Windows Registry, Android’s global properties very often serve as a trivial
way of sharing important yet relatively stable values globally among all parts of the stack.

Theory of operation

As I mentioned earlier, init maintains a property service as part of its other responsi‐
bilities. As you can see in Figure 6-4, there are two ways that this property service is
exposed to the rest of the system:
/dev/socket/property_service

This is a Unix domain socket that processes can open to talk to the property service
and have it set and/or change the value of global properties.

/dev/__properties__
This is an “invisible” file (i.e., you won’t see it in /dev if you look for it) that is created
within the tmpfs-mounted /dev and that is memory-mapped into the address space

238 | Chapter 6: Native User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

of all services started by init. It’s through this mapped region that descendants of
init (i.e., all user-space processes in the system) can read global properties.

/dev/__properties__’s Invisibility
You won’t find /dev/__properties__ in the filesystem because of the way init handles the
file. Here’s what it actually does to the file during initialization:

1. Creates /dev/__properties__ in read-write mode.
2. Sets its size to a desired global properties workspace size.
3. Memory-maps the file into init’s address space.
4. Closes the file descriptor.
5. Opens the file as read-only.
6. Deletes the file from the filesystem.

By deleting the file as a last step, anyone looking into /dev won’t actually see the file.
However, since the file was memory-mapped while it was still open in read-write mode,
init’s property service is able to continue writing to the memory-mapped file. Also, since
it was opened in read-only mode before it was deleted, init also has a file descriptor it
can pass to its children, so they can in turn memory-map the file, which will remain
read-only for them.

As explained in the sidebar, the property service essentially maintains a RAM-based
workspace where it stores all global properties. Because of the way it’s set up, only the
property service can write to this workspace, though any process can read from it. Hence
we have a single-writer/multiple-readers configuration. This design allows the property
service to apply permission checks on the write requests submitted to it through
the /dev/socket/property_service Unix domain socket. The specific permissions required
to set certain global properties are hardcoded. Here’s the relevant snippet from 2.3/
Gingerbread’s system/core/init/property_service.c:

/* White list of permissions for setting property services. */
struct {
 const char *prefix;
 unsigned int uid;
 unsigned int gid;
} property_perms[] = {
 { "net.rmnet0.", AID_RADIO, 0 },
 { "net.gprs.", AID_RADIO, 0 },
 { "net.ppp", AID_RADIO, 0 },
 { "ril.", AID_RADIO, 0 },
 { "gsm.", AID_RADIO, 0 },
 { "persist.radio", AID_RADIO, 0 },

Init | 239

www.it-ebooks.info

http://www.it-ebooks.info/

 { "net.dns", AID_RADIO, 0 },
 { "net.", AID_SYSTEM, 0 },
 { "dev.", AID_SYSTEM, 0 },
 { "runtime.", AID_SYSTEM, 0 },
 { "hw.", AID_SYSTEM, 0 },
 { "sys.", AID_SYSTEM, 0 },
 { "service.", AID_SYSTEM, 0 },
 { "wlan.", AID_SYSTEM, 0 },
 { "dhcp.", AID_SYSTEM, 0 },
 { "dhcp.", AID_DHCP, 0 },
 { "vpn.", AID_SYSTEM, 0 },
 { "vpn.", AID_VPN, 0 },
 { "debug.", AID_SHELL, 0 },
 { "log.", AID_SHELL, 0 },
 { "service.adb.root", AID_SHELL, 0 },
 { "persist.sys.", AID_SYSTEM, 0 },
 { "persist.service.", AID_SYSTEM, 0 },
 { "persist.security.", AID_SYSTEM, 0 },
 { NULL, 0, 0 }
};

To understand the meaning of each AID_* UID, please refer to the discussion about the
android_filesystem_config.h file in “The Build System and the Filesystem” on page 185
where user IDs and other core filesystem properties are defined. For instance, the above
says that only processes running as the system user can change properties that start with
sys. or hw., while only processes running as the radio user—the rild, for instance—
can change properties that start with ril. or gsm.

Note that processes running as root can change any property they wish. Note also that
in the case of properties whose names starts with ro., these three characters are stripped
from the name before permissions are checked with the above array. Such properties
can be set only once, however. Trying to change the value of an existing property whose
name starts with ro. will fail. Furthermore, if a permission isn’t explicitly granted by
the above array for a given property (or property set) to the user under which a process
is running, that process won’t be allowed to set that property. Here’s an attempt to set
acme.birdradar.enable from a non-root shell for example:

$ setprop acme.birdradar.enable 1
[1992.292414] init: sys_prop: permission denied uid:2000 name:acme.birdradar
.enable

As we discussed in the Toolbox section, you can use getprop, setprop, and watchprops
to interact with the property service from the command line. You can also interact with
the property service from within the code you build as part of the AOSP. If you’re coding
in Java, have a look at the frameworks/base/core/java/android/os/SystemProper
ties.java class. To use this class, you would need to import android.os.SystemProper
ties. If you’re coding in C, have a look at system/core/include/cutils/properties.h. To use
the functions in this header, you need to include <cutils/properties.h>.

240 | Chapter 6: Native User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

Global properties aren’t accessible through the regular app develop‐
ment API exposed by the SDK.

Nomenclature and sets

As you likely noticed from all previous discussions on global properties, they seem to
follow a certain naming convention where each part of the name is separated by a period
character (.), with each part of the name following the period, further narrowing the
subcategory to which the property belongs. Beyond that, there are few conventions. Of
course, the permissions array we saw earlier somewhat dictates a base set of root cate‐
gories. And quite a few properties are created as part of the build system, as we’ll see
shortly. There are also a few special properties worth keeping in mind. Still, each device
has its own specific set of global properties. There is, therefore, no definitive dictionary
or official list of global properties that are to be expected across Android devices.

There’s nothing stopping you from creating your own set of global properties specifically
for your embedded system. Up to now, I’ve used the acme.birdradar.enable property
to illustrate some of the examples. I could very much have a whole slew of acme.*
properties, each used for a separate purpose in my system. You can also modify some
of the existing global properties as needed for your purpose. Make sure you fully in‐
vestigate how a specific global property you modify is used by the rest of Android, as
some of these properties are read or set by vastly different parts of the stack. A good
grep across the entire codebase for the property should rapidly help you isolate its users.

You should use getprop after the initial boot of your system to get your
device’s base list of properties. Also, you can look at the default list of
properties loaded at startup from property files. We’ll take a look at
those in the next section.

There are, as I said, some special properties, as well as some properties that are processed
differently based on their prefixes:
ro.*

Properties that start with this prefix are meant to be read-only. Hence, they can be
set only once in the system’s lifetime. The only way to change their value is to change
the source of the information to which they are set and reboot the system. Such is
the case for ro.hardware and ro.build.id, for example.

persist.*

Properties marked with this prefix are committed to persistent storage each time
they are set. Such is the case for persist.service.adb.enable, which is used to
start/stop adbd.

Init | 241

www.it-ebooks.info

http://www.it-ebooks.info/

ctl.*

There’s a ctl.start and a ctl.stop, and setting them doesn’t actually result in any
property being saved to the global set of properties. Instead, when the property
service receives a request to set either of these, it starts/stops the service whose name
is provided as the value for the property. The Surface Flinger, for instance, does this
as part of its startup:

 property_set("ctl.start", "bootanim");

This effectively results in the bootanim service being started by init. The boota
nim service and its options are described in the init.rc file we covered earlier. Tool‐
box’s start and stop also rely on ctl.* to start/stop services.

net.change

Whenever a net.* property is changed, net.change is set to the name of that
property. Hence, net.change always contains the name of the last net.* property
that was modified.

Storage

There isn’t a single location in which global properties are stored or from which they’re
set. Instead, different pieces of the system are responsible for setting different sets of
global properties, and several system parts are involved in creating the final set of global
properties found in any single Android device.

The build system. Two property files are generated by the build system:
/system/build.prop

This one contains information about the build itself, such as the version of Android
and the date it was built.

/default.prop
This one contains default values for certain key properties, such as the persist.ser
vice.adb.enable property that we saw earlier.

Both of these files are found in the target’s root filesystem for the initial boot and serve
as the base set of properties for the system. You can find them in the root/ and system/
subdirectories of out/target/product/PRODUCT_DEVICE/.

The files contain one-liner name-value pairs. They’re read and parsed by the property
service started early during init’s own startup. Most of the content of these files is gen‐
erated by the core AOSP build code in build/core/. Still, as in the following snippet from
Crespo’s makefiles in 2.3/Gingerbread, some of it is device specific:

PRODUCT_PROPERTY_OVERRIDES += \
 wifi.interface=eth0 \
 wifi.supplicant_scan_interval=15 \
 dalvik.vm.heapsize=32m

242 | Chapter 6: Native User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

Additional property files. In addition to the files generated by the build system, you can
add your own target-specific /system/default.prop and device-specific /data/local.prop,
both of which will be read by the property service alongside the files generated by the
build system we just discussed.

.rc files. As we saw earlier, both the init.rc file and init.<device_name>.rc can set global
properties. init.rc in fact sets quite a few crucial global properties.

Code. Some parts of the code also set properties. The Connectivity Service, for instance,
does this:

 SystemProperties.set("net.hostname", name);

To confuse things even further, some parts of the code attempt to read global properties
and apply defaults if the value isn’t found. The following is from frameworks/base/core/
jni/AndroidRuntime.cpp:

 property_get("dalvik.vm.heapsize", heapsizeOptsBuf+4, "16m");

In this case, the caller attempts to get dalvik.vm.heapsize, and if it isn’t found, the
value 16m is used as the default.

/data/property. All the storage methods we’ve seen thus far require manual intervention
to either make changes to the AOSP before it’s built or to edit files on the device. Ob‐
viously, the system needs to be able to automatically update values at runtime and have
them available at the next reboot. That’s the role of the entries in the /data/property
directory. Indeed, any property that starts with persist. is stored as an individual file
in that directory. Each of the files there contains the value assigned to the property.
Hence, the /data/property/persist.service.adb.enable file contains the value of per
sist.service.adb.enable.

Properties found in /data/property are read by the property service at startup and re‐
stored. As I mentioned earlier when discussing Toolbox’s setprop, the only way to destroy
a persistent stored property is to delete its file from /data/property.

ueventd
As discussed earlier, init includes functionality to handle kernel hotplug events. When
the /init binary is invoked through the /sbin/ueventd symbolic link, it immediately
switches its identity from running as the regular init to running as ueventd. Figure 6-5
illustrates ueventd’s operation.

Init | 243

www.it-ebooks.info

http://www.it-ebooks.info/

7. This file’s naming is similar to that of the /init.<device_name>.rc we saw earlier.

Figure 6-5. Android’s ueventd

ueventd is one of the very first services started by the default init.rc. It proceeds to read
its main configuration files, /ueventd.rc and /ueventd.<device_name>.rc,7 replays all
kernel uevents (i.e., hotplug events), and then waits, listening for all future uevents.
Kernel uevents are delivered to ueventd through a netlink socket, a common way for
certain kernel functionalities to communicate with user-space tools and daemons.

Based on the events ueventd receives and its configuration files, it automatically creates
device node entries in /dev. And since the latter is mounted as a tmpfs filesystem, and
therefore lives only in RAM, these entries are re-created from scratch, based on ue‐
ventd’s configuration files, at every reboot. The key to ueventd’s operation, therefore, is
its configuration files.

Unlike init, ueventd’s configuration files have a rather simple format. Essentially, every
device entry is described with a one-liner such as this:

/dev/<node> <mode> <user> <group>

When a uevent corresponding to node occurs, ueventd creates /dev/node with access
permissions set to mode and assigns the entry to user/group. Permissions and ownership
are very important, since key daemons and services must have access to relevant /dev
entries in order to operate properly. The System Server, for instance, runs as the sys
tem user.

Here’s a snippet from the default ueventd.rc from 2.3/Gingerbread, for example:

/dev/null 0666 root root
/dev/zero 0666 root root
/dev/full 0666 root root
/dev/ptmx 0666 root root
/dev/tty 0666 root root

244 | Chapter 6: Native User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

...
these should not be world writable
/dev/diag 0660 radio radio
/dev/diag_arm9 0660 radio radio
/dev/android_adb 0660 adb adb
/dev/android_adb_enable 0660 adb adb
/dev/ttyMSM0 0600 bluetooth bluetooth
/dev/ttyHS0 0600 bluetooth bluetooth
/dev/uinput 0660 system bluetooth
/dev/alarm 0664 system radio
/dev/tty0 0660 root system
/dev/graphics/* 0660 root graphics
/dev/msm_hw3dm 0660 system graphics
/dev/input/* 0660 root input
/dev/eac 0660 root audio
...

As with init, you should put your board-specific node entries in ueventd.<de
vice_name>.rc. Here’s a device entry from ueventd.coyotepad.rc, for example:

/dev/bradar 0660 system birdradar

Note that some uevents might require ueventd to load firmware files on behalf of the
kernel. There’s no configuration option available for that in ueventd’s configuration files.
Instead, make sure those firmware files are in either /etc/firmware or /vendor/firm
ware. In the case of the CoyotePad, for instance, we put rfirmware.bin in /system/vendor/
firmware using PRODUCT_COPY_FILES.

Boot Logo
Not counting whatever the device’s bootloader might display at startup, Android devices’
screens typically go through four stages during boot:
Kernel boot screen

Usually, an Android device won’t show the kernel boot messages to its LCD screen
during boot. Instead, the kernel might either maintain the screen black until init
starts, or it might display a static logo, built as part of the kernel image, to the
framebuffer. Any such display is beyond the scope of this book.

Init boot logo
This is a text string or an image displayed very early by init while it initializes the
console. This section’s purpose is to discuss what init displays here.

Boot animation
This is a series of animated images, possibly a loop, that displays during the Surface
Flinger’s start up. We’ll discuss the boot animation when we cover the Java user-
space later.

Init | 245

www.it-ebooks.info

http://www.it-ebooks.info/

Home screen
This is the starting screen of the Launcher, which is activated at the complete end
of the boot sequence. You’ll need to dig into the Launcher’s sources if you’d like to
customize what it displays.

If you refer back to the earlier explanation in “Configuration Files” on page 230 of the
execution order enforced by init on predefined actions and built-in commands, you’ll
notice that the fifth step is initializing the console and display startup text or image.
During this step, init attempts to load a logo image from the /initlogo.rle file and display
it to the screen. If it doesn’t find such a file, it displays the familiar text string that is
displayed by the emulator as it starts, as shown in Figure 6-6.

Figure 6-6. init’s boot logo

If you’d like to change that string, have a look at the console_init_action() in system/
core/init/init.c. If you’d like to have a graphic logo to display instead of just text, you’ll
need to create a proper initlogo.rle. Let’s see how that’s done.

First, you’ll need to figure out the screen size of your device. For instance, the emulator’s
default resolution when started from the AOSP’s command line after build is 320 by
480 pixels. Assuming you have a PNG of that size, you first need to convert it to the

246 | Chapter 6: Native User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

8. Remember that you’ll need to run build/envsetup.sh and lunch before the paths are properly set to use host
tools built as part of the AOSP.

format recognized by init. Two tools on the host are required to do that: convert, which
is part of the ImageMagick package, and rgb2565, which is built as part of the AOSP:8

$ cd device/acme/coyotepad
$ convert -depth 8 acmelogo.png rgb:acmelogo.raw
$ rgb2565 -rle < acmelogo.raw > acmelogo.rle
153600 pixels

This will take the acmelogo.png and convert it into an acmelogo.rle, which you can then
copy by modifying the CoyotePad’s full_coyote.mk to add this snippet:

PRODUCT_COPY_FILES += \
 device/acme/coyotepad/acmelogo.rle:root/initlogo.rle

After you rebuild the AOSP, update your device, and restart it, you’ll see the logo instead
of the previous text string, as illustrated in Figure 6-7.

Figure 6-7. CoyotePad’s boot logo

Generally, the LCD screen will then remain unchanged until the Surface Flinger starts
and launches the boot animation while the rest of the system services are starting.

Init | 247

www.it-ebooks.info

http://www.imagemagick.org
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Android Framework

Ultimately, your goal is to get your embedded system to run the Android environment
users and developers are accustomed to, not simply the native user-space we just cov‐
ered. That includes not only the full set of system services and the packages that provide
the standard APIs used by app developers, but also some less visible components, such
as a set of native daemons that support the system services and the Hardware Abstrac‐
tion Layer. This chapter will cover how the Android Framework operates on top of the
native user-space and will discuss how to interact with and customize it.

Note that unlike the previously discussed components of Android, whose behavior can
be modified in a number of ways, most of the Android Framework has to be used as is.
You can’t, for instance, pick and choose which system services to run, as they aren’t
started from a script or based on a configuration file. Instead, modifying the Framework
typically requires diving into its sources and/or adding your own code to customize its
behavior.

Such customization work therefore requires becoming intimately familiar with An‐
droid’s sources and is inherently version dependent. Still, we’ll try to cover enough of
the essentials to enable you to start navigating Android’s internals on your own.
Nevertheless, expect this to be the start of a long-term endeavor, as Android’s sources
are fairly big, and new releases come out at a very rapid pace.

What Exactly Is the “Android Framework”?
If you refer back to Figure 2-1, the Android Framework includes the android.* pack‐
ages, the System Services, the Android Runtime, and some of the native daemons.
Sourcewise, the Android Framework is typically composed of all the code located in the
frameworks/ directory of the AOSP.

At a certain level, I’m using “Android Framework” here to designate practically every‐
thing “Android” that runs on top of native user-space. So my explanations here do

249

www.it-ebooks.info

http://www.it-ebooks.info/

sometimes go beyond just frameworks/. Namely, I will discuss such things as Dalvik and
the HAL, which are intrinsic to the Android Framework.

Kick-Starting the Framework
We closed the last chapter on the init command, and how it can be configured and used.
I only briefly hinted, however, at how the Android Framework is started by way of the
Zygote when describing the default init.rc. There is of course much to say on this topic,
as we’ll see shortly. Much of what I described in the last chapter can be easily compared
to components that exist in the embedded Linux world; however, very little of what
follows has any such equivalent. Indeed, the Android developers’ contribution to the
world of mobile is the stack they built on top of a BSD/ASL-licensed embedded Linux
equivalent.

Building the AOSP Without the Framework
As odd as it may seem, there are cases where you actually may want to build the AOSP
without all the fancy, Java-based system services and apps that Android is most widely
known for. Whether it be to run “Android” on a “headless” system or simply because
you’re in the midst of a board bringup and would like a minimal build of the AOSP to
get just the basic tools and environment of the native user-space, there’s an AOSP build
for you: Tiny Android.

To make the AOSP generate Tiny Android, you just need to go to the AOSP’s source
directory and type this:

$ BUILD_TINY_ANDROID=true make -j16

This will get you a set of output images with the minimal set of Android components
for a functional native Android user-space to run with a kernel. Mainly, you’ll get Tool‐
box, Bionic, init, adbd, logcat, sh, and a few other key binaries and libraries. No part of
the Android Framework, such as the system services or any of the apps, will be included
in those images.

It’s questionable whether this is “Android” anymore, but in some cases it’s exactly what
you’re looking for. Whether you want to refer to the end result as “Android” is really up
to you. Hey, apparently beauty is in the eye of the beholder.

Core Building Blocks
The Framework’s operation relies on a handful of key building blocks: the Service Man‐
ager, the Android Runtime, the Zygote, and Dalvik. Without these, none of the com‐
ponents that make up what we know to be Android work. We’ve already covered most

250 | Chapter 7: Android Framework

www.it-ebooks.info

http://www.it-ebooks.info/

of these and their role in the system’s startup in Chapter 2. I encourage you to go back
to that chapter for an in-depth discussion, but let’s still recap the highlights here, espe‐
cially now that we’ve just looked at init and its scripts. You may, in fact, want a finger
on the pages from Appendix D about the main init.rc file as you read the following
explanations.

One of the first services started by init is the servicemanager. As I explained earlier, this
is the “Yellow Pages” or the directory of all system services running. Obviously, at the
time it starts no system services have started, but it needs to be available very early on
so that system services that do start can register with it and therefore become visible to
the rest of the system.

If the servicemanager isn’t running, none of the system services will be able to advertise
themselves, and the Framework simply will not work. Hence, the servicemanager is not
an optional component, and its ordering in the init.rc file isn’t subject to customization.
You must leave it exactly where it is in the main init.rc file with the options that are
specified for it by default.

The next core component to get started is the Zygote. Here’s the relevant line from init.rc:

service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-sys
tem-server

There is a lot happening in that simple line. First, note that what’s actually getting run
is this app_process command. Here’s its formal parameter list:

Usage: app_process [java-options] cmd-dir start-class-name [options]

app_process is a little-known command that packs a punch. It lets you start a new Dalvik
VM for running Android code straight from the command line. This doesn’t mean you
can use it to start regular Android apps from the command line; in fact you can’t use it
for that purpose, but you’ll soon learn about a command that does: am. However, some
key system components and tools must be started from the command line without a
reference to any existing Dalvik VM instance. The Zygote is one of these, as it’s the first
Dalvik process to run; am and pm are two more, which we’ll cover later.

To do its magic, app_process relies on the Android Runtime. Packaged as a shared library,
libandroid_runtime.so, the Android Runtime is capable of starting and managing a
Dalvik VM for the purpose of running Android-type code. Among other things, it
preloads this VM with a number of libraries that are typically used by any code that
relies on the Android APIs. This includes all the native calls, which are required by any
of the Android Framework’s Java code. These are registered with the VM so it can find
them whenever a Java-coded Android Framework package calls on one of its native
functions.

The Runtime also includes functions for facilitating operations typically done for all
Android-type applications running on Dalvik. You can, in fact, consider Dalvik to be a

Kick-Starting the Framework | 251

www.it-ebooks.info

http://www.it-ebooks.info/

very raw, low-level VM that doesn’t assume you’re running Android-type code on top
of it. To run Android-type code on top of Dalvik, the Runtime starts Dalvik with pa‐
rameters specifically tailored for its use to run Java code that relies on the Android Java
APIs—either those publicly documented in the developer documentation and made
available through the SDK, or internal APIs available only as part of building internal
Android code within the AOSP.

Furthermore, the Runtime relies on many native user-space functionalities. For in‐
stance, it takes into account some of the init-maintained global properties in order to
gate the starting of the Dalvik VM, and it uses Android’s logging functions to log the
progress of the Dalvik VM’s initialization. In addition to setting up the parameters used
to start the Dalvik VM used to run Java code, the Runtime also initializes some key
aspects of the Java and Android environment before calling the code’s main() method.
Most importantly, it provides a default exception handler for all threads running on the
just-instantiated VM.

Note that the Runtime doesn’t preload classes: That’s something the Zygote does when
it sets up the system for running Android apps. And since each use of the app_process
command results in starting a separate VM, all non-Zygote instances of Dalvik will load
classes on demand, not before your code starts running.

Dalvik’s Global Properties
In addition to the global properties maintained by init that we discussed in the last
chapter, Dalvik continues to provide the property system found in Java through
java.lang.System. As such, if you’re browsing some of the system services’ sources,
you might notice calls to System.getProperty() or System.setProperty(). Note that
those calls and the underlying set of properties are completely independent from init’s
global properties.

The Package Manager Service, for instance, reads the java.boot.class.path at startup.
Yet, if you use getprop on the command line, you won’t find this property as part of the
list of properties returned by init. Instead, such variables are maintained within each
Dalvik instance for retrieval and/or use by running Java code. The specific
java.boot.class.path, for instance, is set in dalvik/vm/Properties.c using the BOOT
CLASSPATH variable set in init.rc.

You can find out more about Java System Properties in Java’s official documentation.
Note that the semantics of the variable names used by init’s global properties are very
similar to those used by Java System Properties.

Once it’s started, a Java class launched using app_process can start using “regular” An‐
droid APIs and talk to existing system services. If it’s built as part of the AOSP, it can
use many of the android.* packages available to it at build time. The am and pm

252 | Chapter 7: Android Framework

www.it-ebooks.info

http://docs.oracle.com/javase/tutorial/essential/environment/sysprop.html
http://www.it-ebooks.info/

commands, for instance, do exactly that. It follows that you, too, could write your own
command-line tool completely in Java, using the Android API, and have it start sepa‐
rately from the rest of the Framework. In other words, it would be started and would
run independently of the Zygote and everything that the Zygote causes to start as part
of its own initialization.

But this still won’t let you write a regular Android app that is started by app_process.
Android apps can be started only by the Activity Manager using intents, and the Activity
Manager is itself started as part of the rest of the system services once the Zygote itself
is started. Which brings the discussion back to the startup of the Zygote.

For the Zygote to start properly and have it start the System Server, you must leave its
corresponding app_process line intact in init.rc, in its default location. There’s nothing
that you can configure about the Zygote’s startup. You can, however, influence the way
the Android Runtime starts any of its Dalvik VMs by modifying some of the system’s
global properties. Have a look at the AndroidRuntime::startVm(JavaVM** pJavaVM,
JNIEnv** pEnv) function in frameworks/base/core/jni/AndroidRuntime.cpp in either
2.3/Gingerbread or 4.2/Jelly Bean to see which global properties are read by the Android
Runtime as it prepares to start a new VM. Note that any use of these properties to
influence the setup of Dalvik VMs is likely to be version specific.

Once the Zygote’s VM is started, the com.android.internal.os.ZygoteInit class’s
main() function is called, and it will preload the entire set of Android packages, proceed
to start the System Server, and then start looping around and listening for connections
from the Activity Manager asking it to fork and start new Android apps. Again, there
is nothing to be customized here unless you can see something relevant to you in the
list of parameters used to start the System Server in the startSystemServer() function
in frameworks/base/core/java/com/android/internal/os/ZygoteInit.java. My recom‐
mendation is to leave this as is unless you have a very strong understanding of Android’s
internals.

Disabling the Zygote
While you can’t configure what the Zygote does at startup, you can nevertheless disable
its startup entirely by adding the disabled option to its section in init.rc. Here’s how
this is done in 2.3/Gingerbread:

service zygote /system/bin/app_process -Xzygote /system/bin --zygote
--start-system-server
 socket zygote stream 666
 onrestart write /sys/android_power/request_state wake
 onrestart write /sys/power/state on
 onrestart restart media
 onrestart restart netd

 disabled

Kick-Starting the Framework | 253

www.it-ebooks.info

http://www.it-ebooks.info/

This will effectively prevent init from starting the Zygote at boot time, so none of the
Android Framework’s parts will start, including the System Server. This may be very
useful if you’re in the process of debugging critical system errors or developing one of
the HAL modules, and you must manually set up debugging tools, load files, or monitor
system behavior before key system services start up.

You can then start the Zygote, and the rest of the system:

start zygote

System Services
As we saw in the last section, the System Server is started as part of the Zygote’s startup,
and we’ll continue delving into that part of the process in this section. However, and as
was discussed in Chapter 2, there are also system services started from processes other
than the System Server, and we’ll discuss those in this section.

Starting with 4.0/Ice-Cream Sandwich, the very first system service to get started is the
Surface Flinger. Up to 2.3/Gingerbread, it had been started as part of the System Server,
but with 4.0/Ice-Cream Sandwich, it’s started right before the Zygote and runs inde‐
pendently from the System Server and the rest of the system services. Here’s the relevant
snippet that precedes the Zygote’s entry in init.rc in 4.2/Jelly Bean:

service surfaceflinger /system/bin/surfaceflinger
 class main
 user system
 group graphics drmrpc
 onrestart restart zygote

The Surface Flinger’s sources are in frameworks/base/services/surfaceflinger/ in 2.3/
Gingerbread and frameworks/native/services/surfaceflinger/ in 4.2/Jelly Bean. Its role is
to composite the drawing surfaces used by apps into the final image displayed to the
user. As such, it’s one of Android’s most fundamental building blocks.

In Android 4.0, because the Surface Flinger is started before the Zygote, the system’s
boot animation comes up much faster than in earlier versions. We’ll discuss the boot
animation later in this chapter.

To start the System Server, the Zygote forks and runs the com.android.server.Sys
temServer class’ main() function. The latter loads the libandroid_servers.so library,
which contains the JNI parts required by some of the system services and then invokes
native code in frameworks/base/cmds/system_server/library/system_init.cpp, which
starts C-coded system services that run in the system_server process. In 2.3/Ginger‐
bread, this includes the Surface Flinger and the Sensor Service. In 4.2/Jelly Bean,
however, the Surface Flinger is started separately, as we just saw, and the only C-coded
system service started by system_server is the Sensor Service.

254 | Chapter 7: Android Framework

www.it-ebooks.info

http://www.it-ebooks.info/

1. Interestingly, a new ro.config.headless global property has been added to the official AOSP releases since
4.1/Jelly Bean. That property appears to allow the execution of the stack without a user interface.

The System Server then goes back to Java and starts initializing the critical system serv‐
ices such as the Power Manager, Activity Manager, and Package Manager. It then con‐
tinues to initialize all the system services it hosts and registers them with the Service
Manager. This is all done in code in frameworks/base/services/java/com/android/server/
SystemServer.java. None of this is configurable. It’s all hardcoded into SystemServ
er.java, and there are no flags or parameters you can pass to tell the System Server not
to start some of the system services. If you want to disable any, you’ll have to go in by
hand and comment out the corresponding code.

The system services are interdependent, and almost all of Android’s
parts, including the Android API, assume that all the system services
built into the AOSP are available at all times. As I mentioned in Chap‐
ter 2, as a whole, the system services form an object-oriented OS built
on top of Linux—and the parts of that OS weren’t built with modularity
in mind. So if you take one of the system services away, it’s fair to assume
that some of Android’s parts will start breaking under your feet.
That doesn’t mean it can’t be done, though. As part of a presentation
titled “Headless Android” at the 2012 Android Builders Summit, I
showed how I successfully disabled the Surface Flinger, the Window
Manager, and a couple of other key system services, to run the full An‐
droid stack on a headless system. As I warned in that presentation, that
work was very much a proof of concept and would require a lot more
effort to be production ready.1

So, by all means, feel free to tinker around, but you’ve been warned that
if you’re going to play this deep in Android’s guts, you’d better saddle
up.

What’s /system/bin/system_server?
You might notice while browsing your target’s root filesystem that there’s a binary called
system_server in /system/bin. That binary, however, has nothing to do with the startup
of the System Server or with any of the system services. It’s unclear what purpose, if any,
this binary has. It’s very likely that this is a legacy utility from Android’s early days.

This factoid is often a source of confusion, because a quick look at the list of binaries
and the output of ps may lead you to believe that the system_server process is in fact
started by the system_server command. I was in fact very skeptical of my own reading

Kick-Starting the Framework | 255

www.it-ebooks.info

http://www.opersys.com/blog/headless-android-1
http://www.it-ebooks.info/

of the sources on that matter and posted a question about it to the android-building
mailing list. The ensuing response seems to confirm my reading of the sources, however.

In addition to the Surface Flinger and the system services started by the System Server,
another set of system services stems from the starting of mediaserver. Here’s the relevant
snippet from 2.3/Gingerbread’s init.rc (4.2/Jelly Bean’s is practically identical):

service media /system/bin/mediaserver
 user media
 group system audio camera graphics inet net_bt net_bt_admin net_raw
 ioprio rt 4

The mediaserver, whose sources are in frameworks/base/media in 2.3/Gingerbread and
frameworks/av/media in 4.2/Jelly Bean, starts the following system services: Audio
Flinger, Media Player Service, Camera Service, and Audio Policy Service. Again, none
of this is configurable, and it’s recommended that you leave the relevant init.rc portions
untouched unless you fully understand the implications of your modifications. For in‐
stance, if you try to remove the startup of the mediaplayer service from init.rc or use
the disabled option to prevent it from starting, you will notice messages such as these
in logcat’s output:

...
I/ServiceManager(56): Waiting for service media.audio_policy...
I/ServiceManager(56): Waiting for service media.audio_policy...
I/ServiceManager(56): Waiting for service media.audio_policy...
W/AudioSystem(56): AudioPolicyService not published, waiting...
I/ServiceManager(56): Waiting for service media.audio_policy...
I/ServiceManager(56): Waiting for service media.audio_policy...
...

And the system will hang and continue to print out those messages until the media‐
server is started.

Note that the mediaserver is one of the only init services that uses the ioprio option.
Presumably—and there’s unfortunately no official documentation to confirm this—this
is used to make sure that media playback has an appropriate priority to avoid choppy
playback.

There is finally one odd player in this game, the Phone app, which provides the Phone
system service. Generally speaking, apps are the wrong place to put system services
because apps are lifecycle managed and can therefore be stopped and restarted at will.
System services, on the other hand, are supposed to live from boot to reboot and cannot
therefore be stopped midstream without affecting the rest of the system. The Phone app
is different, however, because its manifest file has the android:persistent property of
the application XML element set to true. This indicates to the system that this app
should not be lifecycle managed, which therefore enables it to house a system service.

256 | Chapter 7: Android Framework

www.it-ebooks.info

https://groups.google.com/forum/?fromgroups=#!topic/android-platform/x2ToX7x5Yzw
http://www.it-ebooks.info/

It will also lead to this app being automatically started as part of the initialization of the
Activity Manager.

Again, there’s nothing typically configurable about the Phone app’s startup. You can,
however, relatively easily remove the Phone app from the list of apps built into the AOSP.
The result, however, will be that any part of the system depending on that system service
will fail to function correctly. Again, you might as well leave it in. If you want to remove
the dialer icon from the home screen, then what you actually want to remove is the
Contacts app. As counterintuitive as it may sound, the typical phone dialer Android
users are accustomed to isn’t part of the Phone app; it’s part of the Contacts app.

Another example of an app that houses a system service is the NFC app
found in packages/apps/Nfc/.

The Phone app way of providing a system service is very interesting, because it opens
the door for us to emulate its example and to add system services as apps within our
own device/acme/coyotepad/ directory—without having to modify the sources of the
default system services in frameworks/base/services/.

Boot Animation
As I explained when discussing the boot logo in the previous chapter, Android’s LCD
goes through four stages during boot. One of those is a boot animation. Here’s the
corresponding entry in 2.3/Gingerbread’s init.rc (the one in 4.2/Jelly Bean is practically
identical):

service bootanim /system/bin/bootanimation
 user graphics
 group graphics
 disabled
 oneshot

Notice that this service is marked as disabled. Hence, init won’t actually start this right
away. Instead, it must be explicitly started somewhere else. In this case, it’s the Surface
Flinger that actually starts the boot animation after it has finished its own initialization
by setting the ctl.start global property. Here’s code from the SurfaceFlinger::ready
ToRun() function in 2.3/Gingerbread’s frameworks/base/services/surfaceflinger/Surfa
ceFlinger.cpp:

 // start boot animation
 property_set("ctl.start", "bootanim");

The code in 4.2/Jelly Bean’s frameworks/native/services/surfaceflinger/SurfaceFlin
ger.cpp does effectively the same thing:

Kick-Starting the Framework | 257

www.it-ebooks.info

http://www.it-ebooks.info/

...
void SurfaceFlinger::startBootAnim() {
 // start boot animation
 property_set("service.bootanim.exit", "0");
 property_set("ctl.start", "bootanim");
}
...
status_t SurfaceFlinger::readyToRun()
{
...

 // start boot animation
 startBootAnim();

 return NO_ERROR;
}
...

And given that the Surface Flinger is one of the first system services started—if not the
first—the boot animation ends up continuously displaying while critical parts of the
system are initializing. Typically, it will stop only when the phone’s home screen finally
comes to the fore. We’ll take a look at some of the things happening during the boot
animation shortly.

As you can see in the previous init.rc snippet, the bootanim service corresponds to the
bootanimation binary. The latter’s sources are in frameworks/base/cmds/bootanima
tion/, and if you dig into them you’ll notice that this utility talks directly through Binder
to the Surface Flinger in order to render its animation; hence the need for the Surface
Flinger to be live before the animation can start. Figure 7-1 illustrates the default An‐
droid boot animation displayed by bootanimation, with the moving light reflection
projected on the Android logo.

258 | Chapter 7: Android Framework

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 7-1. Default boot animation

bootanimation actually has two modes of operation. In one mode it creates the default
Android logo boot animation using the images in frameworks/base/core/res/assets/
images/. It’s likely best not to try modifying the boot animation by touching these files.
Instead, by providing either /data/local/bootanimation.zip or /system/media/bootani
mation.zip, you will force bootanimation to enter its other mode of operation, where it
uses the content of one of those ZIP files to render a boot animation. It’s worth taking
some time to see how that can be done, even though a book is not the ideal medium for
illustrating a running animation.

bootanimation.zip

The bootanimation.zip is a regular, uncompressed ZIP file with at least a desc.txt file at
the top-level directory inside and a bunch of directories containing PNG files. The latter
are animated in sequence according to the rules in the desc.txt file. Note that bootani
mation doesn’t support anything but PNG files. Here are the semantics of the desc.txt
file:

<width> <height> <fps>
p <count> <pause> <path>
p <count> <pause> <path>

Kick-Starting the Framework | 259

www.it-ebooks.info

http://www.it-ebooks.info/

Note that the file’s format is very simplistic and doesn’t allow for any fluff. So stick to
the above semantics as is. The first line indicates the width, height, and frame rate
(frames per second) for the animation. Each subsequent line is a part of the animation.
For each part, you must provide the number of times this part is played (count), the
number of frames to pause after each time the part is played (pause), and the directory
where that part of the animation is located (path). Parts are played in the order they
appear in the desc.txt.

Each animation part, and therefore the associated directory, is made of several PNG
files, with filenames being a string representing the sequential number of that frame in
the full sequence. Files could, for instance, be named 001.png, 002.png, 003.png, etc. If
the count is set to zero, the part will loop playing until the system has finished booting
and the Launcher starts. Typically, initial parts are likely to have a count of 1, while the
last part usually has a count of 0, so it continues playing until the boot is done.

The best way to create your own boot animation is to look at the existing bootanima
tion.zip files that have been created by others. If you look for that filename in your
favorite search engine, you should find a few examples relatively easily. Have a look, for
example, at some of the latest boot animations created for the CyanogenMod
aftermarket Android distribution.

Again, make sure the ZIP file you created isn’t compressed. Otherwise
it won’t work. Have a look at the zip command’s man page—especially
the -0 flag.

Disabling the boot animation

You can also outright disable the boot animation if you don’t want it. Just use the setprop
command in init.rc to set the debug.sf.nobootanimation to 1:

 setprop debug.sf.nobootanimation 1

In this case, the screen will go black at some point after the boot logo has been displayed,
and stay black until the Launcher app displays the home screen.

Dex Optimization
One of the system services started during the boot animation is the Package Manager.
We haven’t covered its functionality in detail, but suffice it to say that the Package Man‐
ager manages all the .apks in the system. Among other things, it’ll deal with the instal‐
lation and removal of .apks and help the Activity Manager resolve intents.

One of the Package Manager’s responsibilities is also to make sure that JIT-ready ver‐
sions of any DEX byte-code are available prior to the corresponding Java code ever
executing. To achieve this, the Package Manager’s constructor (the Package Manager

260 | Chapter 7: Android Framework

www.it-ebooks.info

http://bit.ly/WapOZ9
http://www.it-ebooks.info/

system service is implemented as a Java class) goes through all .apk and .jar files in the
system and requests that installd run the dexopt command on them.

This process should happen on the first boot only. Subsequently, the /data/dalvik-
cache directory will contain JIT-ready versions of all .dex files, and the boot sequence
should be substantially faster. If you look into logcat’s output at first boot, you’ll actually
see entries like these:

D/dalvikvm(32): DexOpt: --- BEGIN 'core.jar' (bootstrap=1) ---
D/dalvikvm(62): Ignoring duplicate verify attempt on Ljava/lang/Object;
D/dalvikvm(62): Ignoring duplicate verify attempt on Ljava/lang/Class;
D/dalvikvm(62): DexOpt: load 349ms, verify+opt 4153ms
D/dalvikvm(32): DexOpt: --- END 'core.jar' (success) ---
D/dalvikvm(32): DEX prep '/system/framework/core.jar': unzip in 405ms, rewrit
e 5337ms
D/dalvikvm(32): DexOpt: --- BEGIN 'bouncycastle.jar' (bootstrap=1) ---
D/dalvikvm(63): DexOpt: load 54ms, verify+opt 779ms
D/dalvikvm(32): DexOpt: --- END 'bouncycastle.jar' (success) ---
D/dalvikvm(32): DEX prep '/system/framework/bouncycastle.jar': unzip in 48ms,
 rewrite 1023ms
D/dalvikvm(32): DexOpt: --- BEGIN 'ext.jar' (bootstrap=1) ---
D/dalvikvm(64): DexOpt: load 129ms, verify+opt 1497ms
D/dalvikvm(32): DexOpt: --- END 'ext.jar' (success) ---
D/dalvikvm(32): DEX prep '/system/framework/ext.jar': unzip in 91ms, rewrite
1923ms
...
D/installd(35): DexInv: --- BEGIN '/system/framework/am.jar' ---
D/dalvikvm(95): DexOpt: load 15ms, verify+opt 58ms
D/installd(35): DexInv: --- END '/system/framework/am.jar' (success) ---
D/installd(35): DexInv: --- BEGIN '/system/framework/input.jar' ---
D/dalvikvm(96): DexOpt: load 5ms, verify+opt 28ms
D/installd(35): DexInv: --- END '/system/framework/input.jar' (success) ---
D/installd(35): DexInv: --- BEGIN '/system/framework/pm.jar' ---
D/dalvikvm(97): DexOpt: load 12ms, verify+opt 64ms
D/installd(35): DexInv: --- END '/system/framework/pm.jar' (success) ---
...
D/installd(35): DexInv: --- BEGIN '/system/app/ApplicationsProvider.apk' ---
D/dalvikvm(249): DexOpt: load 31ms, verify+opt 110ms
D/installd(35): DexInv: --- END '/system/app/ApplicationsProvider.apk' (succe
ss) ---
D/installd(35): DexInv: --- BEGIN '/system/app/UserDictionaryProvider.apk' --
-
D/dalvikvm(253): DexOpt: load 19ms, verify+opt 52ms
D/installd(35): DexInv: --- END '/system/app/UserDictionaryProvider.apk' (suc
cess) ---
D/installd(35): DexInv: --- BEGIN '/system/app/Settings.apk' ---
D/dalvikvm(254): DexOpt: load 155ms, verify+opt 894ms
D/installd(35): DexInv: --- END '/system/app/Settings.apk' (success) ---
D/installd(35): DexInv: --- BEGIN '/system/app/Launcher2.apk' ---
D/dalvikvm(256): DexOpt: load 178ms, verify+opt 581ms
D/installd(35): DexInv: --- END '/system/app/Launcher2.apk' (success) ---

Kick-Starting the Framework | 261

www.it-ebooks.info

http://www.it-ebooks.info/

At first, the Package Manager Service isn’t yet running, so we can see Dalvik running
dexopt directly for some .jar files instead of being run by installd, as happens when the
Package Manager Service requests it. Once the Package Manager is started, it then runs
the rest of this optimization process in the following order:

1. .jar files listed in the BOOTCLASSPATH variable in init.rc
2. .jar files listed as libraries in /system/etc/permission/platform.xml
3. .apk and .jar files found in /system/framework
4. .apk files found in /system/app
5. .apk files found in /vendor/app
6. .apk files found in /data/app
7. .apk files found in /data/app-private

Obviously this process takes some time. On my quad-core CORE i7, it takes the emulator
image of a freshly compiled 2.3/Gingerbread AOSP 75 seconds for its first full boot (i.e.,
up to the home screen) and 24 seconds for subsequent boots. In a production system,
such as a phone, boot times like this can be unacceptable.

You’ll therefore be happy to hear that you can actually stop this optimization process
from happening at boot time and do it at build time instead. You just need to set the
WITH_DEXPREOPT build flag to true when building the AOSP:

$ make WITH_DEXPREOPT=true -j16

You can also set this variable in your device’s BoardConfig.mk instead, and avoid having
to add it to the make command every time. In the case of the emulator build, this wasn’t
done by default in 2.3/Gingerbread but is in 4.2/Jelly Bean.

The build will of course take more time, but the first boot will be significantly faster. On
the same workstation mentioned previously, it takes 30 minutes to build 2.3/Ginger‐
bread instead of 20 with the WITH_DEXPREOPT flag. However, the emulator image comes
up in 40 seconds instead of 75 on a first boot. When the option is used, the /data/dalvik-
cache directory ends up being empty on the target after the first boot. Instead, at build
time, .odex files are placed side by side in the same filesystem path as their correspond‐
ing .jar and .apk files.

Apps Startup
As the startup of the system services nears its end, apps start to get activated, including
the home screen. As I explained in Chapter 2, the Activity Manager ends its initialization
by sending an intent of type Intent.CATEGORY_HOME, which causes the Launcher app to
start and the home screen to appear. That’s only part of the story, though. The startup

262 | Chapter 7: Android Framework

www.it-ebooks.info

http://www.it-ebooks.info/

2. These are dot-separated names, such as com.android.launcher for the Launcher app, for example.

of the system services will in fact cause quite a few apps to start. Here’s a portion of the
output of the ps command on a freshly booted 2.3/Gingerbread emulator image:

ps
...
root 32 1 60832 16240 c009b74c afd0b844 S zygote
media 33 1 17976 1056 ffffffff afd0b6fc S /system/bin/mediaserver
bluetooth 34 1 1256 220 c009b74c afd0c59c S /system/bin/dbus-daemon
root 35 1 812 232 c02181f4 afd0b45c S /system/bin/installd
keystore 36 1 1744 212 c01b52b4 afd0c0cc S /system/bin/keystore
root 38 1 824 268 c00b8fec afd0c51c S /system/bin/qemud
shell 40 1 732 200 c0158eb0 afd0b45c S /system/bin/sh
root 41 1 3364 168 ffffffff 00008294 S /sbin/adbd
system 61 32 124096 26352 ffffffff afd0b6fc S system_server
app_19 113 32 80336 17400 ffffffff afd0c51c S com.android.inputmethod.
 latin
radio 121 32 87112 17972 ffffffff afd0c51c S com.android.phone
system 122 32 73160 18452 ffffffff afd0c51c S com.android.systemui
app_26 132 32 76608 20812 ffffffff afd0c51c S com.android.launcher
app_1 169 32 85368 20584 ffffffff afd0c51c S android.process.acore
app_12 234 32 70752 15748 ffffffff afd0c51c S com.android.quicksearchbox
app_8 242 32 73108 16908 ffffffff afd0c51c S android.process.media
app_10 266 32 70928 16572 ffffffff afd0c51c S com.android.providers.
 calendar
app_29 300 32 72764 17484 ffffffff afd0c51c S com.android.email
app_18 315 32 70272 15428 ffffffff afd0c51c S com.android.music
app_22 323 32 69712 15220 ffffffff afd0c51c S com.android.protips
app_3 335 32 71432 16756 ffffffff afd0c51c S com.cooliris.media
...

All the processes that have a Java-style process name2 are actually apps that were auto‐
matically started with no user intervention whatsoever at system startup. Various system
mechanisms cause these apps to start given the content of their respective manifest files.
And this is a welcome change, since controlling apps’ activation requires a lot less in‐
ternals work than is required for controlling many other aspects of the startup, as we’ve
seen above. Instead, it’s all about creating carefully crafted apps for packaging with the
AOSP. Sure, there’s the case where you’ll want to modify a stock app to make it behave
or start differently, but at least we’re into the app world, where functionality is more
loosely coupled and documentation more readily accessible.

Which leads us to discussing the triggers that cause stock apps to be activated.

Input methods

One of the earliest types of apps to start are input methods. The Input Method Manager
Service’s constructor goes around and activates all app services that have an intent filter

Kick-Starting the Framework | 263

www.it-ebooks.info

http://www.it-ebooks.info/

for android.view.InputMethod. This is how, for example, the LatinIME app, which
runs as the com.android.inputmethod.latin process, is activated.

As you can see by reading the Creating an Input Method blog post on the Android
Developers Blog, input methods are actually carefully crafted services.

Persistent apps

Apps that have the android:persistent="true" attribute in the <application> ele‐
ment of their manifest file will be automatically spawned at startup by the Activity
Manager. In fact, should such an app ever die, it will also be automatically restarted by
the Activity Manager.

As I explained earlier, unlike regular apps, apps that are marked as persistent are not
lifecycle managed by the Activity Manager. Instead, they are kept alive throughout the
lifetime of the system. This allows using such apps to implement special functionality.
The status bar and the phone app, for example, running as the com.android.system
ui and com.android.phone processes, are persistent apps.

While the app development documentation does explain the role of
android:persistent, the use of that attribute is reserved for apps that
are built within the AOSP.

Home screen

Typically there’s only one home screen app, and it reacts to the Intent.CATEGORY
_HOME intent, which is sent by the Activity Manager at the end of the system services’
startup. There’s a sample home app in development/samples/Home/, but the real home
app activated is in packages/apps/Launcher2/. Here’s the Launcher’s main activity and
its intent filter in 2.3/Gingerbread (4.2/Jelly Bean’s is basically the same):

 <activity
 android:name="com.android.launcher2.Launcher"
 android:launchMode="singleTask"
 android:clearTaskOnLaunch="true"
 android:stateNotNeeded="true"
 android:theme="@style/Theme"
 android:screenOrientation="nosensor"
 android:windowSoftInputMode="stateUnspecified|adjustPan">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.HOME" />
 <category android:name="android.intent.category.DEFAULT" />
 <category android:name="android.intent.category.MONKEY"/>
 </intent-filter>
 </activity>

264 | Chapter 7: Android Framework

www.it-ebooks.info

http://android-developers.blogspot.com/2009/04/creating-input-method.html
http://www.it-ebooks.info/

Obviously, if you want to start a custom app to be the home screen instead of Launcher2,
you’ll need to remove the latter and add your own that reacts to that same intent. If
more than one app reacts to that intent, users will get a dialog asking them which of the
home screens they want to use.

Note that this intent isn’t sent just at startup. Depending on the state of the system, the
Activity Manager will send this intent whenever it needs to bring the home screen to
the foreground.

BOOT_COMPLETED intent

The Activity Manager also broadcasts the Intent.BOOT_COMPLETED intent at startup.
This is an intent commonly used by apps to be notified that the system has finished
booting. A number of stock apps in the AOSP actually rely on this intent, such as Media
provider, Calendar provider, Mms app, and Email app. Here’s the broadcast receiver
used by the Media Provider in 2.3/Gingerbread, along with its intent filter (4.2/Jelly
Bean’s is very similar):

 <receiver android:name="MediaScannerReceiver">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.MEDIA_MOUNTED" />
 <data android:scheme="file" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.MEDIA_SCANNER_SCAN_
 FILE" />
 <data android:scheme="file" />
 </intent-filter>
 </receiver>

In order to receive this intent, apps must explicitly request permission to do so:
 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />

APPWIDGET_UPDATE intent

In addition to apps, the App Widget Service, which is itself a system service, registers
itself to receive the Intent.BOOT_COMPLETED. It uses the receipt of that intent as a trigger
to activate all app widgets in the system by sending Intent.APPWIDGET_UPDATE. Hence,
if you’ve developed an app widget as part of your app, your code will be activated at this
point. Have a look at the App Widgets section of the Android developer documentation
for more information on how to write your own app widget.

Several stock AOSP apps have app widgets, such as Quick Search Box, Music, Protips,
and Media. Here’s the Quick Search Box’s app widget declaration in its manifest file, for
example:

Kick-Starting the Framework | 265

www.it-ebooks.info

http://bit.ly/VQ0k4u
http://www.it-ebooks.info/

 <receiver android:name=".SearchWidgetProvider"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.appwidget.action.APPWIDGET_
 UPDATE" />
 </intent-filter>
 <meta-data android:name="android.appwidget.provider" android:
 resource="@xml/search_widget_info" />
 </receiver>

Utilities and Commands
Once the Framework and the basic set of apps is up and running, there are quite a few
commands that you can use to query or interact with system services and the Frame‐
work. Much like the commands covered in Chapter 6, these can be used on the command
line once you shell into the device. But these commands have no meaning, and therefore
no effect, unless the Framework is running. Of course you’ll find many of these useful,
even crucial, as you’re bringing up Android on new devices and/or debugging parts of
the Framework. And as with the commands in the native user-space, the tools available
for interacting with the Framework vary greatly in terms of documentation and capa‐
bilities. Yet they provide the essential capabilities required to bring Android up on new
hardware or to troubleshoot it on existing products. Let’s take a look at the command
set available to you for interacting with the Android Framework.

Many of the commands here are located in the frameworks/base/cmds/
directory of the AOSP sources, though in 4.2/Jelly Bean, some of those
commands have been moved to frameworks/native/cmds/. I encourage
you to refer to those sources when using some of these commands, as
their effects aren’t always obvious just by looking at their online help,
when it exists.

General-Purpose Utilities
In contrast with some utilities we’ll see later, a certain number of utilities are useful for
interacting with various parts of the Framework. Some of these are very powerful.

service

The service command allows us to interact with any system service registered with the
Service Manager:

service -h
Usage: service [-h|-?]
 service list
 service check SERVICE
 service call SERVICE CODE [i32 INT | s16 STR] ...

266 | Chapter 7: Android Framework

www.it-ebooks.info

http://www.it-ebooks.info/

Options:
 i32: Write the integer INT into the send parcel.
 s16: Write the UTF-16 string STR into the send parcel.

As you can see, it can be used for querying but can also be used for invoking methods
from system services. Here’s how it can be used to query the list of existing system
services in 2.3/Gingerbread:

service list
Found 50 services:
0 phone: [com.android.internal.telephony.ITelephony]
1 iphonesubinfo: [com.android.internal.telephony.IPhoneSubInfo]
2 simphonebook: [com.android.internal.telephony.IIccPhoneBook]
3 isms: [com.android.internal.telephony.ISms]
4 diskstats: []
5 appwidget: [com.android.internal.appwidget.IAppWidgetService]
6 backup: [android.app.backup.IBackupManager]
7 uimode: [android.app.IUiModeManager]
8 usb: [android.hardware.usb.IUsbManager]
9 audio: [android.media.IAudioService]
10 wallpaper: [android.app.IWallpaperManager]
11 dropbox: [com.android.internal.os.IDropBoxManagerService]
12 search: [android.app.ISearchManager]
13 location: [android.location.ILocationManager]
14 devicestoragemonitor: []
15 notification: [android.app.INotificationManager]
16 mount: [IMountService]
17 accessibility: [android.view.accessibility.IAccessibilityManager]
...

The interface names provided in between square brackets allow you to browse the AOSP
sources to find the matching .aidl file that defines the interface.

You can also check if a given service exists:
service check power
Service power: found

Most interestingly, you can use service call to directly invoke system services’ Binder-
exposed methods. In order to do that, you first need to understand that service’s inter‐
face. Here’s the IStatusBarService interface definition from 2.3/Gingerbread’s frame
works/base/core/java/com/android/internal/statusbar/IStatusBarService.aidl (4.2/Jelly
Bean’s interface name is the same, though setIcon()’s prototype has changed):

...
interface IStatusBarService
{
 void expand();
 void collapse();
 void disable(int what, IBinder token, String pkg);
 void setIcon(String slot, String iconPackage, int iconId, int iconLevel);
...

Utilities and Commands | 267

www.it-ebooks.info

http://www.it-ebooks.info/

Note that service call actually needs a method code, not a method’s name. To find the
codes matching the method names defined in the interface, you’ll need to look up the
code generated by the aidl tool based on the interface definition. Here’s the relevant
snippet from the IStatusBarService.java file generated in out/target/common/obj/
JAVA_LIBRARIES/framework_intermediates/src/core/java/com/android/internal/
statusbar/:

...
static final int TRANSACTION_expand = (android.os.IBinder.FIRST_CALL_
TRANSACTION + 0);
static final int TRANSACTION_collapse = (android.os.IBinder.FIRST_CALL_
TRANSACTION + 1);
static final int TRANSACTION_disable = (android.os.IBinder.FIRST_CALL_
TRANSACTION + 2);
static final int TRANSACTION_setIcon = (android.os.IBinder.FIRST_CALL_
TRANSACTION + 3);
...

Also, note that frameworks/base/core/java/android/os/IBinder.java has the following
definition for FIRST_CALL_TRANSACTION:

 int FIRST_CALL_TRANSACTION = 0x00000001;

Hence, expand()’s code is 1 and collapse()’s code is 2. Therefore, this command will
cause the status bar to expand:

service call statusbar 1

While this command will cause the status bar to collapse:
service call statusbar 2

This is a very simple case where the action is rather obvious and the methods invoked
don’t take any parameters. In other cases, you’ll need to look more closely at the system
service’s API and understand the parameters expected. In addition, keep in mind that
system services’ interfaces aren’t necessarily exposed through .aidl files. In some cases,
such as for the Activity Manager, the interface definition is hardcoded directly into a
regular Java file instead of being autogenerated. And in the case of C-based system
services, the Binder marshaling and unmarshaling is all done straight in C code. Hence,
try using grep on the AOSP’s frameworks/ directory in addition to out/target/
common/ to find all instances of FIRST_CALL_TRANSACTION.

dumpsys

Another interesting thing to do is to query system services’ internal state. Indeed, every
system service implements a dump() method internally that can be queried using the
dumpsys command:

dumpsys [<service>]

268 | Chapter 7: Android Framework

www.it-ebooks.info

http://www.it-ebooks.info/

By default, if no system service name is provided as a parameter, dumpsys will first print
out the list of system services and will then dump their status:

dumpsys
Currently running services:
 SurfaceFlinger
 accessibility
 account
 activity
 alarm
 appwidget
 audio
 backup
 battery
 batteryinfo
 clipboard
 connectivity
 content
 cpuinfo
 device_policy
 devicestoragemonitor
 diskstats
 dropbox
 entropy
 hardware
...

DUMP OF SERVICE SurfaceFlinger:
+ Layer 0x1e5788
 z= 21000, pos=(0, 0), size=(320, 480), needsBlending=0, needsDith
ering=0, invalidate=0, alpha=0xff, flags=0x00000000, tr=[1.00, 0.00][0.00, 1.00]
 name=com.android.internal.service.wallpaper.ImageWallpaper
 client=0x1ed2a8, identity=3
 [head= 1, available= 2, queued= 0] reallocMask=00000000, identity=3, sta
tus=0
 format= 4, [320x480:320] [320x480:320], freezeLock=0x0, bypass=0, dq-q-tim
e=2034 us
 Region transparentRegion (this=0x1e5918, count=1)
 [0, 0, 0, 0]
 Region transparentRegionScreen (this=0x1e57bc, count=1)
 [0, 0, 0, 0]
 Region visibleRegionScreen (this=0x1e5798, count=1)
 [0, 25, 320, 480]
+ Layer 0x268b70
 z= 21005, pos=(0, 0), size=(320, 480), needsBlending=1, needsDith
ering=1, invalidate=0, alpha=0xff, flags=0x00000000, tr=[1.00, 0.00][0.00, 1.00]
...

DUMP OF SERVICE accessibility:

DUMP OF SERVICE account:
Accounts: 0

Utilities and Commands | 269

www.it-ebooks.info

http://www.it-ebooks.info/

Active Sessions: 0

RegisteredServicesCache: 1 services
 ServiceInfo: AuthenticatorDescription {type=com.android.exchange}, ComponentIn
fo{com.android.email/com.android.email.service.EasAuthenticatorService}, uid 100
29

DUMP OF SERVICE activity:
Providers in Current Activity Manager State:
 Published content providers (by class):
 * ContentProviderRecord{4060d0e0 com.android.deskclock.AlarmProvider}
...

Obviously the output is very verbose and, most importantly, requires understanding
the corresponding system service’s internals. If you’re implementing your own system
service, however, being able to query its state at runtime can be crucial. Of course, if
you’re not interested in dumping the state of all system services, you just need to provide
the name of the specific service you’d like to get information about as a parameter to
dumpsys:

dumpsys power
Power Manager State:
 mIsPowered=true mPowerState=1 mScreenOffTime=46793204 ms
 mPartialCount=1
 mWakeLockState=SCREEN_ON_BIT
 mUserState=
 mPowerState=SCREEN_ON_BIT
 mLocks.gather=SCREEN_ON_BIT
 mNextTimeout=94351 now=46880555 -46786s from now
 mDimScreen=true mStayOnConditions=1
 mScreenOffReason=0 mUserState=0
 mBroadcastQueue={-1,-1,-1}
 mBroadcastWhy={0,0,0}
 mPokey=0 mPokeAwakeonSet=false
...

dumpstate

In some cases, what you’re trying to do is get a snapshot of the entire system, not just
the system services. This is what dumpstate takes care of. In fact, you might recall our
discussion of this command when we covered adb’s bugreport in Chapter 6, since
dumpstate is what provides bugreport with its information. Here’s dumpstate’s detailed
help in 2.3/Gingerbread:

dumpstate -h
usage: dumpstate [-d] [-o file] [-s] [-z]
 -d: append date to filename (requires -o)
 -o: write to file (instead of stdout)
 -s: write output to control socket (for init)
 -z: gzip output (requires -o)

270 | Chapter 7: Android Framework

www.it-ebooks.info

http://www.it-ebooks.info/

In 4.2/Jelly Bean, dumpstate’s capabilities have expanded:
root@android:/ # dumpstate -h
usage: dumpstate [-b soundfile] [-e soundfile] [-o file [-d] [-p] [-z]] [-s] [-q]
 -o: write to file (instead of stdout)
 -d: append date to filename (requires -o)
 -z: gzip output (requires -o)
 -p: capture screenshot to filename.png (requires -o)
 -s: write output to control socket (for init)
 -b: play sound file instead of vibrate, at beginning of job
 -e: play sound file instead of vibrate, at end of job
 -q: disable vibrate

If you invoke it without any parameters, it goes ahead and queries several parts of the
sytem to provide you with a complete snapshot of the system’s status:

dumpstate
==
== dumpstate: 2012-10-10 03:15:26
==

Build: generic-eng 2.3.4 GINGERBREAD eng.karim.20120913.141233 test-keys
Bootloader: unknown
Radio: unknown
Network: Android
Kernel: Linux version 2.6.29-00261-g0097074-dirty (digit@digit.mtv.corp.google.c
om) (gcc version 4.4.0 (GCC)) #20 Wed Mar 31 09:54:02 PDT 2010
Command line: qemu=1 console=ttyS0 android.checkjni=1 android.qemud=ttyS1 androi
d.ndns=1

------ MEMORY INFO (/proc/meminfo) ------
MemTotal: 94096 kB
MemFree: 1296 kB
Buffers: 0 kB
Cached: 32424 kB
...
------ CPU INFO (top -n 1 -d 1 -m 30 -t) ------

User 2%, System 11%, IOW 33%, IRQ 0%
User 3 + Nice 0 + Sys 15 + Idle 67 + IOW 42 + IRQ 0 + SIRQ 0 = 127

 PID TID CPU% S VSS RSS PCY UID Thread Proc
 339 339 13% R 976K 440K fg shell top top
 121 121 0% S 86100K 18484K fg radio m.android.phone com.android.phone
 3 3 0% S 0K 0K fg root ksoftirqd/0
 4 4 0% S 0K 0K fg root events/0
...
------ PROCRANK (procrank) ------
 PID Vss Rss Pss Uss cmdline
 61 25676K 25076K 10581K 8552K system_server
 124 21412K 21412K 6851K 4908K com.android.launcher

Utilities and Commands | 271

www.it-ebooks.info

http://www.it-ebooks.info/

 122 19268K 19268K 5698K 4388K com.android.systemui
 121 18484K 18484K 4744K 3568K com.android.phone
 295 18176K 18176K 4337K 3132K com.android.email
 115 17836K 17836K 4118K 2960K com.android.inputmethod.latin
...
------ VIRTUAL MEMORY STATS (/proc/vmstat) ------
nr_free_pages 553
nr_inactive_anon 6708
nr_active_anon 6068
nr_inactive_file 3449
nr_active_file 2062
...
------ VMALLOC INFO (/proc/vmallocinfo) ------
0xc684c000-0xc684e000 8192 __arm_ioremap_pfn+0x68/0x2fc ioremap
0xc6850000-0xc6852000 8192 __arm_ioremap_pfn+0x68/0x2fc ioremap
0xc6854000-0xc6856000 8192 __arm_ioremap_pfn+0x68/0x2fc ioremap
0xc6880000-0xc68a1000 135168 binder_mmap+0xb4/0x200 ioremap
...
------ SLAB INFO (/proc/slabinfo) ------
slabinfo - version: 2.1
name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>
 : tunables <limit> <batchcount> <sharedfactor> : slabdata <active_slabs> <num_s
labs> <sharedavail>
rpc_buffers 8 8 2048 2 1 : tunables 24 12 0 : sla
bdata 4 4 0
rpc_tasks 8 24 160 24 1 : tunables 120 60 0 : sla
bdata 1 1 0
rpc_inode_cache 0 0 416 9 1 : tunables 54 27 0 : sla
bdata 0 0 0
bridge_fdb_cache 0 0 64 59 1 : tunables 120 60 0 : sla
bdata 0 0 0
...
------ ZONEINFO (/proc/zoneinfo) ------
Node 0, zone Normal
 pages free 550
 min 312
 low 390
 high 468
 scanned 0 (aa: 0 ia: 0 af: 26 if: 0)
...
------ SYSTEM LOG (logcat -v time -d *:v) ------
10-10 01:38:02.762 I/DEBUG (30): debuggerd: Feb 26 2012 21:06:53
10-10 01:38:02.882 I/Netd (29): Netd 1.0 starting
10-10 01:38:02.932 D/qemud (38): entering main loop
10-10 01:38:02.972 I/Vold (28): Vold 2.1 (the revenge) firing up
10-10 01:38:02.972 D/Vold (28): USB mass storage support is not enabled in
 the kernel
...
------ VM TRACES JUST NOW (/data/anr/traces.txt.bugreport: 2012-10-10 03:15:26)

272 | Chapter 7: Android Framework

www.it-ebooks.info

http://www.it-ebooks.info/

----- pid 61 at 2012-10-10 03:15:26 -----
Cmd line: system_server

DALVIK THREADS:
(mutexes: tll=0 tsl=0 tscl=0 ghl=0 hwl=0 hwll=0)
"main" prio=5 tid=1 NATIVE
 | group="main" sCount=1 dsCount=0 obj=0x4001f1a8 self=0xce48
 | sysTid=61 nice=0 sched=0/0 cgrp=default handle=-1345006528
 | schedstat=(1116789165 392598071 782)
 at com.android.server.SystemServer.init1(Native Method)
 at com.android.server.SystemServer.main(SystemServer.java:625)
...
------ EVENT LOG (logcat -b events -v time -d *:v) ------
10-10 01:38:03.642 I/boot_progress_start(32): 5126
10-10 01:38:04.221 I/boot_progress_preload_start(32): 5706
10-10 01:38:04.251 I/dvm_gc_info(32): [8825198673194415294,-90644969689662529
97,-4012584086963399109,0]
10-10 01:38:04.281 I/dvm_gc_info(32): [8825198673194406507,-92148046065296736
57,-4012584086963329465,0]
10-10 01:38:04.331 I/dvm_gc_info(32): [8825198673194406993,-91348657131437777
12,-4012584086963259824,0]
10-10 01:38:04.371 I/dvm_gc_info(32): [8825198673194415172,-91399322627244589
19,-4012584086963149223,0]
...
------ RADIO LOG (logcat -b radio -v time -d *:v) ------
10-10 01:58:04.988 D/AT (31): AT< +CSQ: 7,99
10-10 01:58:04.988 D/AT (31): AT< OK
10-10 01:58:04.988 D/RILJ (121): [0114]< SIGNAL_STRENGTH {7, 99, 0, 0, 0
, 0, 0}
10-10 01:58:24.998 D/RILJ (121): [0115]> SIGNAL_STRENGTH
10-10 01:58:25.008 D/RIL (31): onRequest: SIGNAL_STRENGTH
...
------ NETWORK INTERFACES (netcfg) ------
*** exec(netcfg): Permission denied
*** netcfg: Exit code 255
[netcfg: 0.1s elapsed]

------ NETWORK ROUTES (/proc/net/route) ------
Iface Destination Gateway Flags RefCnt Use Metric Mask
 MTU Window IRTT
eth0 0002000A 00000000 0001 0 0 0 00FFFFFF
 0 0 0

eth0 00000000 0202000A 0003 0 0 0 00000000
 0 0 0

------ ARP CACHE (/proc/net/arp) ------
IP address HW type Flags HW address Mask Device
10.0.2.2 0x1 0x2 52:54:00:12:35:02 * eth0

------ SYSTEM PROPERTIES ------

Utilities and Commands | 273

www.it-ebooks.info

http://www.it-ebooks.info/

[dalvik.vm.heapsize]: [16m]
[dalvik.vm.stack-trace-file]: [/data/anr/traces.txt]
[dev.bootcomplete]: [1]
[gsm.current.phone-type]: [1]
[gsm.defaultpdpcontext.active]: [true]
...
------ KERNEL LOG (dmesg) ------
Initializing cgroup subsys cpu
Linux version 2.6.29-00261-g0097074-dirty (digit@digit.mtv.corp.google.com) (gcc
 version 4.4.0 (GCC)) #20 Wed Mar 31 09:54:02 PDT 2010
CPU: ARM926EJ-S [41069265] revision 5 (ARMv5TEJ), cr=00093177
CPU: VIVT data cache, VIVT instruction cache
Machine: Goldfish
Memory policy: ECC disabled, Data cache writeback
On node 0 totalpages: 24576
...
------ KERNEL WAKELOCKS (/proc/wakelocks) ------
name count expire_count wake_count active_since total_time
sleep_time max_time last_change
"alarm" 106 0 0 0 1632946980 0 41697763
5822030632794
"KeyEvents" 27 0 0 0 123592046 0 94064309
 27084159991
"event0-61" 26 0 0 0 48780811 0 12891126
 27083608920
"radio-interface" 3 0 0 0 3472899963 0
1459986280 25362482435
...
------ KERNEL CPUFREQ (/sys/devices/system/cpu/cpu0/cpufreq/stats/time_in_state)

*** /sys/devices/system/cpu/cpu0/cpufreq/stats/time_in_state: No such file or di
rectory

------ VOLD DUMP (vdc dump) ------
000 Dumping loop status
000 Dumping DM status
000 Dumping mounted filesystems
000 rootfs / rootfs ro 0 0
...
------ SECURE CONTAINERS (vdc asec list) ------
200 asec operation succeeded
[vdc: 0.1s elapsed]

------ PROCESSES (ps -P) ------
USER PID PPID VSIZE RSS PCY WCHAN PC NAME
root 1 0 268 180 fg c009b74c 0000875c S /init
root 2 0 0 0 fg c004e72c 00000000 S kthreadd
root 3 2 0 0 fg c003fdc8 00000000 S ksoftirqd/0
root 4 2 0 0 fg c004b2c4 00000000 S events/0
root 5 2 0 0 fg c004b2c4 00000000 S khelper
root 6 2 0 0 fg c004b2c4 00000000 S suspend
...

274 | Chapter 7: Android Framework

www.it-ebooks.info

http://www.it-ebooks.info/

------ PROCESSES AND THREADS (ps -t -p -P) ------
USER PID PPID VSIZE RSS PRIO NICE RTPRI SCHED PCY WCHAN PC
 NAME
root 1 0 268 180 20 0 0 0 fg c009b74c 0000875c
 S /init
root 2 0 0 0 15 -5 0 0 fg c004e72c 00000000
 S kthreadd
root 3 2 0 0 15 -5 0 0 fg c003fdc8 00000000
 S ksoftirqd/0
root 4 2 0 0 15 -5 0 0 fg c004b2c4 00000000
 S events/0
root 5 2 0 0 15 -5 0 0 fg c004b2c4 00000000
 S khelper
root 6 2 0 0 15 -5 0 0 fg c004b2c4 00000000
 S suspend
...
------ LIBRANK (librank) ------
 RSStot VSS RSS PSS USS Name/PID
 16658K /dev/ashmem/dalvik-heap
 6980K 6980K 3218K 2896K system_server [61]
 5208K 5208K 1371K 1048K com.android.launcher [124]
 5272K 5272K 1343K 1012K com.android.phone [121]
...
------ BINDER FAILED TRANSACTION LOG (/sys/kernel/debug/binder/failed_transactio
n_log) ------
*** /sys/kernel/debug/binder/failed_transaction_log: No such file or directory

------ BINDER TRANSACTION LOG (/sys/kernel/debug/binder/transaction_log) ------
*** /sys/kernel/debug/binder/transaction_log: No such file or directory

------ BINDER TRANSACTIONS (/sys/kernel/debug/binder/transactions) ------
*** /sys/kernel/debug/binder/transactions: No such file or directory

------ BINDER STATS (/sys/kernel/debug/binder/stats) ------
*** /sys/kernel/debug/binder/stats: No such file or directory

------ BINDER STATE (/sys/kernel/debug/binder/state) ------
*** /sys/kernel/debug/binder/state: No such file or directory

------ FILESYSTEMS & FREE SPACE (df) ------
Filesystem 1K-blocks Used Available Use% Mounted on
tmpfs 47048 32 47016 0% /dev
tmpfs 47048 0 47048 0% /mnt/asec
tmpfs 47048 0 47048 0% /mnt/obb
/dev/block/mtdblock0 65536 65536 0 100% /system
/dev/block/mtdblock1 65536 25292 40244 39% /data
/dev/block/mtdblock2 65536 1156 64380 2% /cache
[df: 0.1s elapsed]

------ PACKAGE SETTINGS (/data/system/packages.xml: 2012-10-10 01:38:16) ------
<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<packages>

Utilities and Commands | 275

www.it-ebooks.info

http://www.it-ebooks.info/

<last-platform-version internal="10" external="0" />
...
------ PACKAGE UID ERRORS (/data/system/uiderrors.txt: 2012-09-24 21:06:14) ----
--
2012-09-24 21:06: No settings file; creating initial state

------ LAST KMSG (/proc/last_kmsg) ------
*** /proc/last_kmsg: No such file or directory

------ LAST RADIO LOG (parse_radio_log /proc/last_radio_log) ------
*** exec(parse_radio_log): Permission denied
*** parse_radio_log: Exit code 255
[parse_radio_log: 0.1s elapsed]

------ LAST PANIC CONSOLE (/data/dontpanic/apanic_console) ------
*** /data/dontpanic/apanic_console: No such file or directory

------ LAST PANIC THREADS (/data/dontpanic/apanic_threads) ------
*** /data/dontpanic/apanic_threads: No such file or directory

------ BLOCKED PROCESS WAIT-CHANNELS ------
------ BACKLIGHTS ------
LCD brightness=*** /sys/class/leds/lcd-backlight/brightness: No such file or dir
ectory
Button brightness=*** /sys/class/leds/button-backlight/brightness: No such file
or directory
Keyboard brightness=*** /sys/class/leds/keyboard-backlight/brightness: No such f
ile or directory
ALS mode=*** /sys/class/leds/lcd-backlight/als: No such file or directory
LCD driver registers:
*** /sys/class/leds/lcd-backlight/registers: No such file or directory

==
== Android Framework Services
==
------ DUMPSYS (dumpsys) ------
Currently running services:
 SurfaceFlinger
...

In most cases, as you can see, dumpstate is in fact invoking other commands such as
logcat, dumpsys, and ps to retrieve its information. As you can also see, the command
is very verbose.

rawbu

In some cases, you may want to back up and later restore the contents of /data. You can
use the rawbu command to do that:

rawbu help
Usage: rawbu COMMAND [options] [backup-file-path]

276 | Chapter 7: Android Framework

www.it-ebooks.info

http://www.it-ebooks.info/

commands are:
 help Show this help text.
 backup Perform a backup of /data.
 restore Perform a restore of /data.
options include:
 -h Show this help text.
 -a Backup all files.

The rawbu command allows you to perform low-level
backup and restore of the /data partition. This is
where all user data is kept, allowing for a fairly
complete restore of a device's state. Note that
because this is low-level, it will only work across
builds of the same (or very similar) device software.

Here’s how it can be used to create a backup:
rawbu backup /sdcard/backup.dat
Stopping system...
Backing up /data to /sdcard/backup.dat...
Saving dir /data/local...
Saving dir /data/local/tmp...
Saving dir /data/app-private...
Saving dir /data/app...
Saving dir /data/property...
Saving file /data/property/persist.sys.localevar...
Saving file /data/property/persist.sys.country...
Saving file /data/property/persist.sys.language...
Saving file /data/property/persist.sys.timezone...
...
Backup complete! Restarting system...

The first thing the command does is stop the Zygote, thereby stopping all system serv‐
ices. It then proceeds to copy everything from /data and finishes by restarting the Zygote.
Once data is backed up, you can restore it later:

rawbu restore /sdcard/backup.dat
Stopping system...
Wiping contents of /data...
warning -- rmdir() error on '/data/system': Directory not empty
warning -- rmdir() error on '/data/system': Directory not empty
Restoring from /sdcard/backup.dat to /data...
Restoring dir /data/local...
Restoring dir /data/local/tmp...
Restoring dir /data/app-private...
Restoring dir /data/app...
...
Restore complete! Restarting system, cross your fingers...

Obviously, as the command’s output implies, this is a fragile operation and you should
be aware that results will vary.

Utilities and Commands | 277

www.it-ebooks.info

http://www.it-ebooks.info/

Service-Specific Utilities
As we saw earlier, there are dozens of system services. Typically, using these system
services requires writing code that interacts with their Binder-exposed API in some way,
shape, or form. In some cases, however, the AOSP includes command-line utilities for
directly interacting with certain system services. Some of these utilities are very powerful
and allow us to tap into Android’s functionality straight from the command line. This
opens the door for using many of the following utilities as part of scripts either in
production or during development.

Circumventing Android’s Permission System
The system services’ APIs are typically protected by Android’s permission system, which
requires apps’ manifest files to declare upfront which permissions they require. Gener‐
ally, a system service will check whether its caller has the appropriate permissions before
going ahead and servicing the caller’s request. Part of this checking will require checking
the caller’s PID and using the Package Manager’s services to verify the originating .apk’s
rights.

There is one case, however, that circumvents all safeguards: when the caller is running
as root. Indeed, if you look at the permission-checking code of the Activity Manager,
which is used by the other system services to check for permissions, you will see this
snippet in frameworks/base/services/java/com/android/server/am/ActivityManagerSer
vice.java in 2.3/Gingerbread:

 int checkComponentPermission(String permission, int pid, int uid,
...
 // Root, system server and our own process get to do everything.
 if (uid == 0 || uid == Process.SYSTEM_UID || pid == MY_PID ||
 !Process.supportsProcesses()) {
 return PackageManager.PERMISSION_GRANTED;
 }
...

In 4.2/Jelly Bean, you’ll find this instead:

 int checkComponentPermission(String permission, int pid, int uid,
...
 if (pid == MY_PID) {
 return PackageManager.PERMISSION_GRANTED;
 }

 return ActivityManager.checkComponentPermission(permission, uid,
 owningUid, exported);
 }

With ActivityManager.checkComponentPermission() being defined as the following
in frameworks/base/core/java/android/app/ActivityManager.java:

278 | Chapter 7: Android Framework

www.it-ebooks.info

http://www.it-ebooks.info/

 public static int checkComponentPermission(String permission, int uid,
 int owningUid, boolean exported) {
 // Root, system server get to do everything.
 if (uid == 0 || uid == Process.SYSTEM_UID) {
 return PackageManager.PERMISSION_GRANTED;
 }
...

Hence, in both versions of the AOSP, any of the commands you see here that talk to a
system service will typically be granted a green light on anything they ask for from a
system service. You must, therefore, be very careful when talking to system services
while running as root. The same applies if you write a command-line utility that mimics
the way many of the commands we cover in this section interact with system services.

am

As I mentioned earlier, one of the most important system services is the Activity Man‐
ager. It should come as no surprise, therefore, that there’s a command that allows us to
directly invoke its functionality. Here’s its online help in 2.3/Gingerbread:

am
usage: am [subcommand] [options]

 start an Activity: am start [-D] [-W] <INTENT>
 -D: enable debugging
 -W: wait for launch to complete

 start a Service: am startservice <INTENT>

 send a broadcast Intent: am broadcast <INTENT>

 start an Instrumentation: am instrument [flags] <COMPONENT>
 -r: print raw results (otherwise decode REPORT_KEY_STREAMRESULT)
 -e <NAME> <VALUE>: set argument <NAME> to <VALUE>
 -p <FILE>: write profiling data to <FILE>
 -w: wait for instrumentation to finish before returning

 start profiling: am profile <PROCESS> start <FILE>
 stop profiling: am profile <PROCESS> stop

 start monitoring: am monitor [--gdb <port>]
 --gdb: start gdbserv on the given port at crash/ANR

 <INTENT> specifications include these flags:
 [-a <ACTION>] [-d <DATA_URI>] [-t <MIME_TYPE>]
 [-c <CATEGORY> [-c <CATEGORY>] ...]
 [-e|--es <EXTRA_KEY> <EXTRA_STRING_VALUE> ...]
 [--esn <EXTRA_KEY> ...]
 [--ez <EXTRA_KEY> <EXTRA_BOOLEAN_VALUE> ...]
 [-e|--ei <EXTRA_KEY> <EXTRA_INT_VALUE> ...]
 [-n <COMPONENT>] [-f <FLAGS>]

Utilities and Commands | 279

www.it-ebooks.info

http://www.it-ebooks.info/

 [--grant-read-uri-permission] [--grant-write-uri-permission]
 [--debug-log-resolution]
 [--activity-brought-to-front] [--activity-clear-top]
 [--activity-clear-when-task-reset] [--activity-exclude-from-recents]
 [--activity-launched-from-history] [--activity-multiple-task]
 [--activity-no-animation] [--activity-no-history]
 [--activity-no-user-action] [--activity-previous-is-top]
 [--activity-reorder-to-front] [--activity-reset-task-if-needed]
 [--activity-single-top]
 [--receiver-registered-only] [--receiver-replace-pending]
 [<URI>]

In 4.2/Jelly Bean, am’s capabilities have expanded, and so, too, has its
online help. Since the latter now covers three pages, it’s impractical to
print it in its entirety in this book. The previous snippet is sufficient for
the present discussion; still, I encourage you to read the am command’s
online help in 4.2/Jelly Bean.

As we saw in Chapter 2, there are four types of components available to app developers:
activities, services, broadcast receivers, and content providers. The first three types of
components are activated through intents, and one of am’s major features is its ability
to send intents straight from the command line.

Here’s how you can use am to get the browser to navigate to a given website along with
the relevant log excerpts:

am start -a android.intent.action.VIEW -d http://source.android.com
Starting: Intent { act=android.intent.action.VIEW dat=http://source.android.com }

logcat
...
D/AndroidRuntime(786):
D/AndroidRuntime(786): >>>>>> AndroidRuntime START com.android.internal.os.Run
timeInit <<<<<<
D/AndroidRuntime(786): CheckJNI is ON
D/AndroidRuntime(786): Calling main entry com.android.commands.am.Am
I/ActivityManager(62): Starting: Intent { act=android.intent.action.VIEW dat=
http://source.android.com flg=0x10000000 cmp=com.android.browser/.BrowserActivit
y } from pid 786
I/ActivityManager(62): Start proc com.android.browser for activity com.androi
d.browser/.BrowserActivity: pid=794 uid=10015 gids={3003, 1015}
D/AndroidRuntime(786): Shutting down VM
D/dalvikvm(786): GC_CONCURRENT freed 100K, 69% free 317K/1024K, external 0K/0K
, paused 1ms+1ms
D/jdwp (786): adbd disconnected
I/ActivityThread(794): Pub browser: com.android.browser.BrowserProvider
I/BrowserSettings(794): Selected search engine: ActivitySearchEngine{android.a
pp.SearchableInfo@40593270}
D/dalvikvm(794): GC_CONCURRENT freed 447K, 51% free 2909K/5831K, external 934K

280 | Chapter 7: Android Framework

www.it-ebooks.info

http://www.it-ebooks.info/

/1038K, paused 5ms+14ms
I/ActivityManager(62): Displayed com.android.browser/.BrowserActivity: +1s924
ms
D/dalvikvm(794): GC_EXTERNAL_ALLOC freed 51K, 50% free 2953K/5831K, external 9
51K/1038K, paused 62ms
...

That’s a rather straightforward example. Let’s look at something a little more customized.
Here’s a broadcast receiver declaration from a custom application:

 <receiver android:name="FastBirdApproaching">
 <intent-filter >
 <action android:name="com.acme.coyotebirdmonitor.FAST_BIRD"/>
 </intent-filter>
 </receiver>

And here’s the corresponding code:
public class FastBirdApproaching extends BroadcastReceiver {
 private static final String TAG = "FastBirdApproaching";

 @Override
 public void onReceive(Context context, Intent intent) {
 // TODO Auto-generated method stub
 Log.i(TAG, "**********");
 Log.i(TAG, "Meep Meep!");
 Log.i(TAG, "**********");
 }
}

Here’s how you can use am to trigger this broadcast receiver and the resulting output
in the logs:

am broadcast -a com.acme.coyotebirdmonitor.FAST_BIRD
Broadcasting: Intent { act=com.acme.coyotebirdmonitor.FAST_BIRD }
Broadcast completed: result=0

logcat
...
I/ActivityManager(62): Start proc com.acme.coyotebirdmonitor for broadcast co
m.acme.coyotebirdmonitor/.FastBirdApproaching: pid=466 uid=10029 gids={}
I/FastBirdApproaching(466): **********
I/FastBirdApproaching(466): Meep Meep!
I/FastBirdApproaching(466): **********
...

As you can see from am’s online help, you can specify a lot of details regarding the intent
to be sent. Whereas the previous two examples used implicit intents, you can also send
explicit intents to activate designated components:

am start -n com.android.settings/.Settings

In this case, this will start the Settings activity of the settings app in the system. Inter‐
estingly, am can start components in ways you can’t replicate using the officially

Utilities and Commands | 281

www.it-ebooks.info

http://www.it-ebooks.info/

published app development API. That’s because it’s built as part of the AOSP and has
therefore access to hidden calls available only to code building within the AOSP.

am is in fact a shell script, as you can see in frameworks/based/cmds/am/am/:
Script to start "am" on the device, which has a very rudimentary
shell.
#
base=/system
export CLASSPATH=$base/framework/am.jar
exec app_process $base/bin com.android.commands.am.Am "$@"

The script uses app_process to start Java code that implements am’s functionality. All
parameters passed on the command line are actually passed on to the Java code as is.

You can also use am for instrumentation, profiling, and monitoring. Have a look at the
Testing Fundamentals and Testing from Other IDEs sections of the Android developer
manual for more information on Android testing and the use of the am instrument
command.

The am profile commands allow us to generate data that can then be visualized on the
host using the traceview command. You can find more information about traceview in
the relevant section of the Android developer manual. Note that the documentation
says there are two ways to create trace files, and the use of the am command on the
command line isn’t listed as one of them.

Finally, the am monitor command allows us to monitor apps run by the Activity Man‐
ager. Here’s a session where I start the command and then start several apps:

am monitor
Monitoring activity manager... available commands:
(q)uit: finish monitoring
** Activity starting: com.android.browser
** Activity resuming: com.android.launcher
** Activity starting: com.android.settings
** Activity resuming: com.android.launcher
** Activity starting: com.android.browser
** Activity starting: com.android.launcher
...

Note that when you start an app and click Back, the command reports that the Launcher
is resuming, whereas if you click the Home button, the Launcher is reported as start
ing. This monitoring capability will also allow you to catch ANRs (Application Not
Responding) and enable you to attach gdb to a crashing process.

Don’t let this brief coverage of am mislead you: This is an extremely
powerful and useful command that you should keep well in mind. If
you ever need to script the starting of apps from the command line, you
will find it to be very useful.

282 | Chapter 7: Android Framework

www.it-ebooks.info

http://bit.ly/Z5VAWj
http://bit.ly/13JVmJN
http://bit.ly/ZxmMxc
http://www.it-ebooks.info/

pm

Another very important system service is the Package Manager and, much like the
Activity Manager, it’s got its own command-line tool. Here’s its online help from 2.3/
Gingerbread:

pm
usage: pm [list|path|install|uninstall]
 pm list packages [-f] [-d] [-e] [-u] [FILTER]
 pm list permission-groups
 pm list permissions [-g] [-f] [-d] [-u] [GROUP]
 pm list instrumentation [-f] [TARGET-PACKAGE]
 pm list features
 pm list libraries
 pm path PACKAGE
 pm install [-l] [-r] [-t] [-i INSTALLER_PACKAGE_NAME] [-s] [-f] PATH
 pm uninstall [-k] PACKAGE
 pm clear PACKAGE
 pm enable PACKAGE_OR_COMPONENT
 pm disable PACKAGE_OR_COMPONENT
 pm setInstallLocation [0/auto] [1/internal] [2/external]

The list packages command prints all packages, optionally only
those whose package name contains the text in FILTER. Options:
 -f: see their associated file.
 -d: filter to include disabled packages.
 -e: filter to include enabled packages.
 -u: also include uninstalled packages.

The list permission-groups command prints all known
permission groups.

The list permissions command prints all known
permissions, optionally only those in GROUP. Options:
 -g: organize by group.
 -f: print all information.
 -s: short summary.
 -d: only list dangerous permissions.
 -u: list only the permissions users will see.

The list instrumentation command prints all instrumentations,
or only those that target a specified package. Options:
 -f: see their associated file.

The list features command prints all features of the system.

The path command prints the path to the .apk of a package.

The install command installs a package to the system. Options:
 -l: install the package with FORWARD_LOCK.
 -r: reinstall an existing app, keeping its data.
 -t: allow test .apks to be installed.

Utilities and Commands | 283

www.it-ebooks.info

http://www.it-ebooks.info/

 -i: specify the installer package name.
 -s: install package on sdcard.
 -f: install package on internal flash.

The uninstall command removes a package from the system. Options:
 -k: keep the data and cache directories around.
after the package removal.

The clear command deletes all data associated with a package.

The enable and disable commands change the enabled state of
a given package or component (written as "package/class").

The getInstallLocation command gets the current install location
 0 [auto]: Let system decide the best location
 1 [internal]: Install on internal device storage
 2 [external]: Install on external media

The setInstallLocation command changes the default install location
 0 [auto]: Let system decide the best location
 1 [internal]: Install on internal device storage
 2 [external]: Install on external media

Much like am, pm’s capabilities have grown through the versions, and
the online help in 4.2/Jelly Bean for this tool is now much larger than
can reasonably fit in this book. I still encourage you to take a look at it.

Fortunately, this command is actually pretty well documented, as you can see from the
output above. Listing the installed packages, for example, is as simple as:

pm list packages
package:android
package:android.tts
package:com.android.bluetooth
package:com.android.browser
package:com.android.calculator2
package:com.android.calendar
package:com.android.camera
package:com.android.certinstaller
package:com.android.contacts
package:com.android.defcontainer
...

Installing an app (the command used by the adb install command covered in the last
chapter):

pm install FastBirds.apk
 pkg: FastBirds.apk
Success

284 | Chapter 7: Android Framework

www.it-ebooks.info

http://www.it-ebooks.info/

Note that removing the app requires knowing its package name, not the original .apk’s
name:

pm uninstall com.acme.fastbirds
Success

pm is also a shell script that starts Java code:
Script to start "pm" on the device, which has a very rudimentary
shell.
#
base=/system
export CLASSPATH=$base/framework/pm.jar
exec app_process $base/bin com.android.commands.pm.Pm "$@"

As with am, there’s much more to pm than I can cover in this book. I
encourage you to explore its many uses, as it can be very helpful for
scripts, either during development and/or in production.

svc

Unlike the two previous commands, svc is something of a Swiss Army knife in attempt‐
ing to provide you with the ability to control several system services. Here’s the online
help for 2.3/Gingerbread:

svc
Available commands:
 help Show information about the subcommands
 power Control the power manager
 data Control mobile data connectivity
 wifi Control the Wi-Fi manager

The online help for 4.2/Jelly Bean shows that it can now also deal with USB:
root@android:/ # svc
Available commands:
 help Show information about the subcommands
 power Control the power manager
 data Control mobile data connectivity
 wifi Control the Wi-Fi manager
 usb Control Usb state

Note how svc’s capabilities are limited to enabling and disabling the behavior of the
designated system services:

svc help power
Control the power manager

usage: svc power stayon [true|false|usb|ac]
 Set the 'keep awake while plugged in' setting.

Utilities and Commands | 285

www.it-ebooks.info

http://www.it-ebooks.info/

svc help data
Control mobile data connectivity

usage: svc data [enable|disable]
 Turn mobile data on or off.

 svc data prefer
 Set mobile as the preferred data network

svc help wifi
Control the Wi-Fi manager

usage: svc wifi [enable|disable]
 Turn Wi-Fi on or off.

 svc wifi prefer
 Set Wi-Fi as the preferred data network

Overall, you should be aware of svc, but it’s unlikely that you’ll make regular use of it.
Like am and pm, svc is also a script that uses app_process to start Java code.

ime

The ime command lets you communicate with the Input Method system service to
control the system’s use of available input methods, and it’s the same in 2.3/Gingerbread
and 4.2/Jelly Bean:

ime
usage: ime list [-a] [-s]
 ime enable ID
 ime disable ID
 ime set ID

The list command prints all enabled input methods. Use
the -a option to see all input methods. Use
the -s option to see only a single summary line of each.

The enable command allows the given input method ID to be used.

The disable command disallows the given input method ID from use.

The set command switches to the given input method ID.

Here’s the list of input methods available on the 2.3/Gingerbread emulator, for example:
ime list
com.android.inputmethod.latin/.LatinIME:
 mId=com.android.inputmethod.latin/.LatinIME mSettingsActivityName=com.android.
inputmethod.latin.LatinIMESettings
 mIsDefaultResId=0x7f080001
 Service:
 priority=0 preferredOrder=0 match=0x108000 specificIndex=-1 isDefault=false
 ServiceInfo:

286 | Chapter 7: Android Framework

www.it-ebooks.info

http://www.it-ebooks.info/

 name=com.android.inputmethod.latin.LatinIME
 packageName=com.android.inputmethod.latin
 labelRes=0x7f0c001f nonLocalizedLabel=null icon=0x0
 enabled=true exported=true processName=com.android.inputmethod.latin
 permission=android.permission.BIND_INPUT_METHOD

Again, ime uses app_process from within a script to start Java code. Like svc, ime is a
command worth keeping in mind, but you’re unlikely to use it very often.

input

input connects to the Window Manager system service and injects text or key events
into the system. Here’s how it operates on 2.3/Gingerbread:

input
usage: input [text|keyevent]
 input text <string>
 input keyevent <event_code>

Here’s how it works on 4.2/Jelly Bean:
root@android:/ # input
usage: input ...
 input text <string>
 input keyevent <key code number or name>
 input [touchscreen|touchpad] tap <x> <y>
 input [touchscreen|touchpad] swipe <x1> <y1> <x2> <y2>
 input trackball press
 input trackball roll <dx> <dy>

input’s functionality is very simple, however. It doesn’t, for instance, know anything
about what’s receiving the events, just that the events are sent to whatever presently has
focus. It’s therefore up to you to make sure that whatever needs to receive your input
actually has focus. Evidently this is difficult when you’re not in front of the screen and
are, instead, trying to script such behavior. Still, input gives you a tool to provide raw
input from the command line. And, in some cases, the meaning of the input you send
doesn’t require focus. Here’s how to click the Home button from the command line, for
example:

input keyevent 3

You’re probably wondering how I know that 3 is the Home key. Have a look at frame
works/base/core/java/android/view/KeyEvent.java and frameworks/base/native/
include/android/keycodes.h in 2.3/Gingerbread or frameworks/native/include/android/
keycodes.h in 4.2/Jelly Bean for the full list of key codes recognized by Android. The
former, for example, contains code such as this:

...
 public static final int KEYCODE_HOME = 3;
 /** Key code constant: Back key. */
 public static final int KEYCODE_BACK = 4;

Utilities and Commands | 287

www.it-ebooks.info

http://www.it-ebooks.info/

 /** Key code constant: Call key. */
 public static final int KEYCODE_CALL = 5;
 /** Key code constant: End Call key. */
 public static final int KEYCODE_ENDCALL = 6;
 /** Key code constant: '0' key. */
 public static final int KEYCODE_0 = 7;
...

Like all other commands, input is a script that relies on app_process.

monkey

There’s another tool that allows you to provide input to Android. It’s called monkey, and
there’s an entire section about it in the app developer documentation entitled UI/Appli‐
cation Exerciser Monkey. As the documentation says, monkey can be used to provide
random yet repeatable input to your application. This command, for instance, will send
50 pseudo-random inputs to the browser app:

monkey -p com.android.browser -v 50

monkey can, however, do much more, as you can see from this output on 2.3/Ginger‐
bread (4.2/Jelly Bean’s is fairly similar):

monkey
usage: monkey [-p ALLOWED_PACKAGE [-p ALLOWED_PACKAGE] ...]
 [-c MAIN_CATEGORY [-c MAIN_CATEGORY] ...]
 [--ignore-crashes] [--ignore-timeouts]
 [--ignore-security-exceptions]
 [--monitor-native-crashes] [--ignore-native-crashes]
 [--kill-process-after-error] [--hprof]
 [--pct-touch PERCENT] [--pct-motion PERCENT]
 [--pct-trackball PERCENT] [--pct-syskeys PERCENT]
 [--pct-nav PERCENT] [--pct-majornav PERCENT]
 [--pct-appswitch PERCENT] [--pct-flip PERCENT]
 [--pct-anyevent PERCENT]
 [--pkg-blacklist-file PACKAGE_BLACKLIST_FILE]
 [--pkg-whitelist-file PACKAGE_WHITELIST_FILE]
 [--wait-dbg] [--dbg-no-events]
 [--setup scriptfile] [-f scriptfile [-f scriptfile] ...]
 [--port port]
 [-s SEED] [-v [-v] ...]
 [--throttle MILLISEC] [--randomize-throttle]
 [--profile-wait MILLISEC]
 [--device-sleep-time MILLISEC]
 [--randomize-script]
 [--script-log]
 [--bugreport]
 COUNT

Most interestingly, you can provide a script to monkey for running a predefined set of
input instead of providing random input. This is a very useful feature for development,
testing, and in-the-field diagnostics. Unfortunately, there’s virtually no documentation

288 | Chapter 7: Android Framework

www.it-ebooks.info

https://developer.android.com/tools/help/monkey.html
https://developer.android.com/tools/help/monkey.html
http://www.it-ebooks.info/

whatsoever on this very powerful feature of monkey. So, for reference, here’s a sample
script file:

This is a sample test script
Lines starting with '#' are comments

This part is the "header"
monkey doesn't actually look for 'type', but does require 'count', 'speed' and
'start data >>'
type= custom
count= 100
speed= 1.0
start data >>

These are the actual instructions to carry out
LaunchActivity(com.android.contacts,com.android.contacts.TwelveKeyDialer)
Use this instead in 4.2./Jelly Bean (line-wrap is for book, remove to run)
LaunchActivity(com.android.contacts,com.android.contacts.activities.Dialtact
sActivity)
UserWait(2500)
DispatchPress(KEYCODE_1)
UserWait(200)
DispatchPress(KEYCODE_8)
UserWait(200)
DispatchPress(KEYCODE_0)
UserWait(200)
DispatchPress(KEYCODE_0)
UserWait(200)
DispatchPress(KEYCODE_8)
UserWait(200)
DispatchPress(KEYCODE_8)
UserWait(200)
DispatchPress(KEYCODE_9)
UserWait(200)
DispatchPress(KEYCODE_8)
UserWait(200)
DispatchPress(KEYCODE_9)
UserWait(200)
DispatchPress(KEYCODE_6)
UserWait(200)
DispatchPress(KEYCODE_9)
UserWait(200)
DispatchPress(KEYCODE_ENTER)
UserWait(10000)
DispatchPress(KEYCODE_ENDCALL)
UserWait(200)
RunCmd(input keyevent 3)
UserWait(1000)
RunCmd(service call statusbar 1)
UserWait(2000)
RunCmd(service call statusbar 2)

Utilities and Commands | 289

www.it-ebooks.info

http://www.it-ebooks.info/

3. The publisher’s phone number, if you’re wondering.

4. A “transport” in the context of bmgr is the required engine to interface with a given cloud service.

5. This is the output on 2.3/Gingerbread. 4.2/Jelly Bean’s is fairly similar.

To run this script, use this command line:
monkey -f myscript 1

This script will essentially start the standard dialer, dial 1-800-889-8969,3 wait 10 sec‐
onds, hang up, return to the home screen, and then expand and collapse the status bar.
Notice that the last part uses the RunCmd instruction to make the script run commands
straight from the command line; incidentally these are commands we saw earlier. Of
course this script is rather short and simple. You can create much longer scripts; you
can possibly even integrate the invocation of such scripts into much more complicated
shell scripts.

For a detailed understanding of the scripting language understood by monkey, along
with the parameters each command can take, I invite you to take a look at monkey’s
script interpreting code in development/cmds/monkey/src/com/android/commands/
monkey/MonkeySourceScript.java and look for EVENT_KEYWORD_. You should then find
event keywords such as DispatchPress, UserWait, and many others.

To do its magic, monkey communicates with the Activity Manager, the Window Man‐
ager, and the Package Manager. It too is a shell script that relies on app_process to start
the Java code that implements the utility.

If you look into the tool’s sources in development/cmds/monkey/, you
will find a file called example_script.txt that appears to contain some
scripted instructions. It’s unclear why this file is in the sources, as the
semantics in that file do not correspond to the actual semantics ex‐
pected by the monkey utility.

bmgr

Since 2.2/Froyo, Android has included a backup capability, allowing users to have their
data backed up into the cloud so it can be restored later should they lose or change their
device. Google itself provides some of this capability by acting as one of the possible
transports,4 but others could provide alternative transports. The API provided within
Android and to app developers is transport-independent. This remains, however, a
functionality that is very specific to the use of Android for phones and tablets and may
not be required in an embedded environment. There’s a tool that allows you to control
the behavior of the Backup Manager system service from the command line:5

bmgr
usage: bmgr [backup|restore|list|transport|run]

290 | Chapter 7: Android Framework

www.it-ebooks.info

http://www.it-ebooks.info/

 bmgr backup PACKAGE
 bmgr enable BOOL
 bmgr enabled
 bmgr list transports
 bmgr list sets
 bmgr transport WHICH
 bmgr restore TOKEN
 bmgr restore PACKAGE
 bmgr run
 bmgr wipe PACKAGE

The 'backup' command schedules a backup pass for the named package.
Note that the backup pass will effectively be a no-op if the package
does not actually have changed data to store.

The 'enable' command enables or disables the entire backup mechanism.
If the argument is 'true' it will be enabled, otherwise it will be
disabled. When disabled, neither backup or restore operations will
be performed.

The 'enabled' command reports the current enabled/disabled state of
the backup mechanism.

The 'list transports' command reports the names of the backup transports
currently available on the device. These names can be passed as arguments
to the 'transport' command. The currently selected transport is indicated
with a '*' character.

The 'list sets' command reports the token and name of each restore set
available to the device via the current transport.

The 'transport' command designates the named transport as the currently
active one. This setting is persistent across reboots.

The 'restore' command when given a restore token initiates a full-system
restore operation from the currently active transport. It will deliver
the restore set designated by the TOKEN argument to each application
that had contributed data to that restore set.

The 'restore' command when given a package name initiates a restore of
just that one package according to the restore set selection algorithm
used by the RestoreSession.restorePackage() method.

The 'run' command causes any scheduled backup operation to be initiated
immediately, without the usual waiting period for batching together
data changes.

The 'wipe' command causes all backed-up data for the given package to be
erased from the current transport's storage. The next backup operation
that the given application performs will rewrite its entire data set.

Utilities and Commands | 291

www.it-ebooks.info

http://www.it-ebooks.info/

If this is relevant to your use of Android, have a look at the Data Backup section of the
app developer manual, along with the information provided by Google regarding its
own backup transport. Much like many of the other commands we saw, app_process is
used to start the actual Java code that interfaces with the Backup Manager service.

stagefright

One of Android’s key features is its rich media layer, and the AOSP includes tools that
enable you to interact with it. More specifically, the stagefright command interacts with
the Media Player service to allow you to do media playback. Here’s its online help in
2.3/Gingerbread (4.2/Jelly Bean’s is slightly expanded):

stagefright -h
usage: stagefright
 -h(elp)
 -a(udio)
 -n repetitions
 -l(ist) components
 -m max-number-of-frames-to-decode in each pass
 -b bug to reproduce
 -p(rofiles) dump decoder profiles supported
 -t(humbnail) extract video thumbnail or album art
 -s(oftware) prefer software codec
 -o playback audio
 -w(rite) filename (write to .mp4 file)
 -k seek test

Here’s how you can play an .mp3 file, for example:
stagefright -a -o /sdcard/trainwhistle.mp3

You might also want to investigate the record and audioloop utilities found alongside
stagefright’s sources in frameworks/base/cmds/stagefright/ in 2.3/Gingerbread and
frameworks/av/cmds/stagefright/ in 4.2/Jelly Bean. Their documentation is severely
lacking, though, and few examples of their uses can be found online or elsewhere. In‐
terestingly, though, all three utilities are coded in C, unlike the majority of the system
service-specific utilities we’ve seen thus far, which were mostly written in Java and ac‐
tivated through a script using app_process. Also, while stagefright directly communicates
with the Media Player service, the record and audioloop commands use an OMXClient,
which conveniently wraps the communication to the same service.

Dalvik Utilities
We’ve already seen how we can send intents with the am command and therefore trigger
the starting of new apps, each of which comes with its own Zygote-forked Dalvik in‐
stances. We’ve also seen how the app_process command can be used to start Java-coded
command-line tools using the Android Runtime. There are some cases, however, where

292 | Chapter 7: Android Framework

www.it-ebooks.info

https://developer.android.com/guide/topics/data/backup.html
https://developers.google.com/android/backup/
http://www.it-ebooks.info/

6. This is the output from 2.3/Gingerbread. 4.2/Jelly Bean’s output is fairly similar.

you may want to forgo all the Android-specific layers and dabble directly with Dalvik.
Here are the commands that allow you to do just that.

dalvikvm

If you haven’t yet already asked yourself if there’s a way to actually start just a Dalvik
VM without any Android-specific functionality, here’s the command you’ve been look‐
ing for:6

dalvikvm -help

dalvikvm: [options] class [argument ...]
dalvikvm: [options] -jar file.jar [argument ...]

The following standard options are recognized:
 -classpath classpath
 -Dproperty=value
 -verbose:tag ('gc', 'jni', or 'class')
 -ea[:<package name>... |:<class name>]
 -da[:<package name>... |:<class name>]
 (-enableassertions, -disableassertions)
 -esa
 -dsa
 (-enablesystemassertions, -disablesystemassertions)
 -showversion
 -help

The following extended options are recognized:
 -Xrunjdwp:<options>
 -Xbootclasspath:bootclasspath
 -Xcheck:tag (e.g. 'jni')
 -XmsN (min heap, must be multiple of 1K, >= 1MB)
 -XmxN (max heap, must be multiple of 1K, >= 2MB)
 -XssN (stack size, >= 1KB, <= 256KB)
 -Xverify:{none,remote,all}
 -Xrs
 -Xint (extended to accept ':portable', ':fast' and ':jit')

These are unique to Dalvik:
 -Xzygote
 -Xdexopt:{none,verified,all}
 -Xnoquithandler
 -Xjnigreflimit:N (must be multiple of 100, >= 200)
 -Xjniopts:{warnonly,forcecopy}
 -Xjnitrace:substring (eg NativeClass or nativeMethod)
 -Xdeadlockpredict:{off,warn,err,abort}
 -Xstacktracefile:<filename>
 -Xgc:[no]precise

Utilities and Commands | 293

www.it-ebooks.info

http://www.it-ebooks.info/

 -Xgc:[no]preverify
 -Xgc:[no]postverify
 -Xgc:[no]concurrent
 -Xgc:[no]verifycardtable
 -Xgenregmap
 -Xcheckdexsum
 -Xincludeselectedop
 -Xjitop:hexopvalue[-endvalue][,hexopvalue[-endvalue]]*
 -Xincludeselectedmethod
 -Xjitthreshold:decimalvalue
 -Xjitblocking
 -Xjitmethod:signature[,signature]* (eg Ljava/lang/String\;replace)
 -Xjitcheckcg
 -Xjitverbose
 -Xjitprofile
 -Xjitdisableopt

Configured with: debugger profiler hprof jit(armv5te) show_exception=1

Dalvik VM init failed (check log file)

dalvikvm is actually a raw Dalvik VM without any connection to “Android” whatsoever.
It doesn’t rely on the Zygote, nor does it include the Android Runtime. It simply starts
a VM to run whatever class or JAR file you provide it. It’s actually not used very often
in the AOSP itself, probably because there isn’t much in the AOSP that doesn’t run in
the context of “Android.” The “preload” Java library in 2.3/Gingerbread, for example,
uses it in frameworks/base/tools/preload/MemoryUsage.java in conjunction with adb to
check the amount of memory used by a class on the target.

dvz

Yet another way to start a Dalvik VM is the dvz command:
dvz --help
Usage: dvz [--help] [-classpath <classpath>]
[additional zygote args] fully.qualified.java.ClassName [args]

Requests a new Dalvik VM instance to be spawned from the zygote
process. stdin, stdout, and stderr are hooked up. This process remains
while the spawned VM instance is alive and forwards some signals.
The exit code of the spawned VM instance is dropped.

As the description implies, dvz actually acts in a similar fashion to the Activity Manager
by requesting the Zygote to fork and start a new process. The only difference here is
that the resulting process isn’t managed by the Activity Manager. Instead, it’s very much
standalone.

It’s unclear whether this utility is meant to be heavily used, as the only instances of its
use within 2.3/Gingerbread are in test code, specifically in dalvik/tests/etc/push-and-

294 | Chapter 7: Android Framework

www.it-ebooks.info

http://www.it-ebooks.info/

run-test-jar, and it’s not even included in the default builds in 4.2/Jelly Bean. Neverthe‐
less, there might be instances where having this in your arsenal could be useful.

The Many Ways to Start Dalvik
Up to now, we’ve seen four different ways to start a Dalvik VM. It’s worth taking a
moment to put them all in perspective. Table 7-1 describes each way to get a working
Dalvik VM, along with what’s included in the VM and how it’s started.

Table 7-1. Ways to start Dalvik
Command Dalvik VM Android Runtime Zygote Activity Manager Mechanism

dalvikvm X Uses libdvm.so
app_process X X Uses libandroid_run

time.so
dvz X X X Uses libcutilsa

am X X X X Talks to Activity Manager
service

a See system/core/libcutils/zygote.c, which contains a zygote_run_wait() and a zygote_run_one
shot().

am is the only command that provides us with a Dalvik VM instance that’s actually
controlled by the Activity Manager. In all other cases, the VM is independent and does
not have its lifecycle managed. am is also the only command that allows us to automat‐
ically trigger the execution of code contained in an .apk. All other commands require
us to provide a specific class or JAR file.

dexdump

If you’d like to reverse-engineer Android apps or JAR files, you can do so with dexdump:
dexdump
dexdump: no file specified
Copyright (C) 2007 The Android Open Source Project

dexdump: [-c] [-d] [-f] [-h] [-i] [-l layout] [-m] [-t tempfile] dexfile...

 -c : verify checksum and exit
 -d : disassemble code sections
 -f : display summary information from file header
 -h : display file header details
 -i : ignore checksum failures
 -l : output layout, either 'plain' or 'xml'
 -m : dump register maps (and nothing else)
 -t : temp file name (defaults to /sdcard/dex-temp-*)

Utilities and Commands | 295

www.it-ebooks.info

http://www.it-ebooks.info/

Here’s how it can be used on a JAR file:
dexdump /system/framework/services.jar
Processing '/system/framework/services.jar'...
Opened '/system/framework/services.jar', DEX version '035'
Class #0 -
 Class descriptor : 'Lcom/android/server/AccessibilityManagerService$1;'
 Access flags : 0x0000 ()
 Superclass : 'Landroid/os/Handler;'
 Interfaces -
 Static fields -
 Instance fields -
 #0 : (in Lcom/android/server/AccessibilityManagerService$1;)
 name : 'this$0'
 type : 'Lcom/android/server/AccessibilityManagerService;'
 access : 0x1010 (FINAL SYNTHETIC)
 Direct methods -
 #0 : (in Lcom/android/server/AccessibilityManagerService$1;)
 name : '<init>'
 type : '(Lcom/android/server/AccessibilityManagerService;)V'
 access : 0x10000 (CONSTRUCTOR)
 code -
 registers : 2
 ins : 2
 outs : 1
 insns size : 6 16-bit code units
 catches : (none)
 positions :
 0x0000 line=113
 locals :
 0x0000 - 0x0006 reg=0 this Lcom/android/server/AccessibilityManagerServi
ce$1;
 Virtual methods -
 #0 : (in Lcom/android/server/AccessibilityManagerService$1;)
 name : 'handleMessage'
...

You can also ask it to dissassemble code:
dexdump -d /system/app/Launcher2.apk
...
00ea5c: |[00ea5c] com.android.common.Arra
yListCursor.<init>:([Ljava/lang/String;Ljava/util/ArrayList;)V
00ea6c: 1206 |0000: const/4 v6, #int 0 // #0
00ea6e: 1a07 e804 |0001: const-string v7, "_id" //
string@04e8
00ea72: 7010 b400 0800 |0003: invoke-direct {v8}, Landro
id/database/AbstractCursor;.<init>:()V // method@00b4
00ea78: 2190 |0006: array-length v0, v9
00ea7a: 1201 |0007: const/4 v1, #int 0 // #0
00ea7c: 1202 |0008: const/4 v2, #int 0 // #0
00ea7e: 3502 0f00 |0009: if-ge v2, v0, 0018 // +000
f

296 | Chapter 7: Android Framework

www.it-ebooks.info

http://www.it-ebooks.info/

00ea82: 4604 0902 |000b: aget-object v4, v9, v2
00ea86: 1a05 e804 |000d: const-string v5, "_id" //
string@04e8
00ea8a: 6e20 dd07 7400 |000f: invoke-virtual {v4, v7}, L
java/lang/String;.compareToIgnoreCase:(Ljava/lang/String;)I // method@07dd
00ea90: 0a04 |0012: move-result v4
00ea92: 3904 3e00 |0013: if-nez v4, 0051 // +003e
00ea96: 5b89 3600 |0015: iput-object v9, v8, Lcom/a
ndroid/common/ArrayListCursor;.mColumnNames:[Ljava/lang/String; // field@0036
00ea9a: 1211 |0017: const/4 v1, #int 1 // #1
00ea9c: 3901 1400 |0018: if-nez v1, 002c // +0014
00eaa0: d804 0001 |001a: add-int/lit8 v4, v0, #int
1 // #01
00eaa4: 2344 d901 |001c: new-array v4, v4, [Ljava/l
ang/String; // class@01d9
00eaa8: 5b84 3600 |001e: iput-object v4, v8, Lcom/a
ndroid/common/ArrayListCursor;.mColumnNames:[Ljava/lang/String; // field@0036
00eaac: 5484 3600 |0020: iget-object v4, v8, Lcom/a
ndroid/common/ArrayListCursor;.mColumnNames:[Ljava/lang/String; // field@0036
...

Obviously the topic of reverse-engineering Android goes way beyond the scope of this
book, but if this topic is of general interest, I recommend taking a look at your favorite
online bookstore for books that specialize in Android security and forensics.

Support Daemons
While the bulk of Android’s intelligence is implemented in system services, there are a
number of cases where a system service acts partly as intermediary to a native daemon
that actually does the key operations required. There are likely two main reasons why
this approach has been favored instead of conducting the actual operations directly as
part of a system server: security and reliability.

As I explained in Chapter 1, Android’s permission model requires app developers who
need to call on privileged operations to request specific permissions at build time. Typ‐
ically, these permissions will resemble something like this in an app’s manifest file:

...
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.WAKE_LOCK" />
...

In this case, these permissions ask for the ability to open sockets and grab wakelocks.
There are obviously a whole lot more permissions than this. Have a look at the app
developer documentation on the full list of permissions available. Without these per‐
missions, an app can’t conduct some of the most critical Android operations. And the
main reason is that apps run as unprivileged users that can’t, for instance, invoke any
system call that requires root privileges or access most of the key devices in /dev. Instead,

Support Daemons | 297

www.it-ebooks.info

http://developer.android.com/reference/android/Manifest.permission.html
http://www.it-ebooks.info/

apps must ask system services to act on their behalf and, in turn, system services check
apps’ permissions before following through with any requests they get.

System services don’t, however, themselves run as root. Instead, the system_server pro‐
cess runs as system; the mediaserver process runs as media; and the Phone app runs as
radio. And if you check in /dev, you’ll see that some entries belong exclusively to some
of these users. You’ll also see quite a few entries that belong to the root user. Hence,
much like apps, system services can’t typically use system calls that require root privi‐
leges nor access key devices in /dev.

Instead, many key operations require system services to communicate through Unix
domain sockets in /dev/socket/ with native daemons running as either root or as a spe‐
cific user to conduct privileged operations. Many of those daemons are Android-
specific, though some, such as bluetoothd prior to 4.2/Jelly Bean, we’ve already covered
in Chapter 6 as being legacy Linux daemons.

In some specific cases, such as rild, for example, which takes care of the communication
with the Baseband Processor, it seems that the choice to run as a separate process might
likely have more to do with reliability. Indeed, the phone functionality of a smartphone
is so critical that it’s worth ensuring that its operation is independent of any potential
issues that could affect the system services housed in the system_server process.

Let’s take a look at the main support daemons used by system services, their configu‐
ration, and related command-line tools. Note that we won’t cover the daemons we cov‐
ered earlier, such as the Zygote; or those that aren’t tied to system services, such as
ueventd and dumpsys; or those, such as bluetoothd or wpa_supplicant, that are not An‐
droid specific.

installd
While the Package Manager service’s job is to deal with the management of .apk files,
it doesn’t have the proper privileges to carry out many of the manipulations and/or
operations required to set up an app to run. Instead, it relies on installd, which runs as
root in 2.3/Gingerbread and as the install user in 4.2/Jelly Bean, for key filesystem
operations and commands. Running dexopt on an .apk to generate JIT-optimized .dex
files for Dalvik, for instance, is done by installd on the Package Manager’s behalf at install
time.

installd is started by this section of init.rc in 2.3/Gingerbread (4.2/Jelly Bean does some‐
thing fairly similar):

service installd /system/bin/installd
 socket installd stream 600 system system

It then opens /dev/socket/installd and listens for a connection, and thereafter listens for
commands from the Package Manager. It doesn’t have a configuration file, nor does it

298 | Chapter 7: Android Framework

www.it-ebooks.info

http://www.it-ebooks.info/

take any command-line parameters. Neither is there any command-line tool to com‐
municate with it independently of the Package Manager. Hence, the only way to activate
installd from the command line is to use the pm command, which will communicate
with the Package Manager, which will, in turn, communicate with installd if required.

installd’s sources are in frameworks/base/cmds/installd/, and you may want to take a
look at install.c and commands.c. The former contains the list of commands recognized
by installd, and the latter contains the actual implementation of those commands. For
reference, here’s the snippet from 2.3/Gingerbread’s install.c that lists the commands
recognized by installd (4.2/Jelly Bean adds a few more commands to that list):

struct cmdinfo cmds[] = {
 { "ping", 0, do_ping },
 { "install", 4, do_install },
 { "dexopt", 3, do_dexopt },
 { "movedex", 2, do_move_dex },
 { "rmdex", 1, do_rm_dex },
 { "remove", 2, do_remove },
 { "rename", 3, do_rename },
 { "freecache", 1, do_free_cache },
 { "rmcache", 2, do_rm_cache },
 { "protect", 2, do_protect },
 { "getsize", 4, do_get_size },
 { "rmuserdata", 2, do_rm_user_data },
 { "movefiles", 0, do_movefiles },
 { "linklib", 2, do_linklib },
 { "unlinklib", 1, do_unlinklib },
};

Note that, much like many of the other daemons we’ll see below, the wire protocol
between installd and the Package Manager is string based. Hence, the above snippet
contains three entries per command: the command’s string as sent “on the wire,” the
number of parameters expected, and the function within install.c to call when the com‐
mand is received.

vold
vold takes care of many of the key operations required by the Mount Service, such as
mounting and formatting volumes. Unlike installd, vold runs as root in both 2.3/
Gingerbread and 4.2/Jelly Bean, while the Mount Service is part of the System Server.
vold is started by this section of 2.3/Gingerbread’s init.rc (the snippet in 4.2/Jelly Bean
is similar):

service vold /system/bin/vold
 socket vold stream 0660 root mount
 ioprio be 2

Support Daemons | 299

www.it-ebooks.info

http://www.it-ebooks.info/

Unlike the rest of the support daemons covered here, vold actually has a configuration
file, /etc/vold.fstab. Here’s a snippet from the default vold.fstab found in system/core/
rootdir/etc/ describing the file’s semantics:

#######################
Regular device mount
##
Format: dev_mount <label> <mount_point> <part> <sysfs_path1...>
label - Label for the volume
mount_point - Where the volume will be mounted
part - Partition # (1 based), or 'auto' for first usable partition.
<sysfs_path> - List of sysfs paths to source devices
######################

Here’s the section that relates to the SD card in the emulator, for example:
dev_mount sdcard /mnt/sdcard auto /devices/platform/goldfish_mmc.0 /devices/plat
form/msm_sdcc.2/mmc_host/mmc1

When vold starts, it parses this file and then opens /dev/socket/vold to listen for con‐
nections and commands. Unlike installd, there’s a command-line tool to communicate
directly with vold:

Usage: vdc <monitor>|<cmd> [arg1] [arg2...]

The actual parameters expected by vdc on the command line are the same as those
expected by vold from the Mount Service when it connects through the designated
socket. There is, unfortunately, no document or online help that describes the complete
command set. Instead, you must look at the CommandListener.cpp file in system/vold/
to see the implementation of vold’s command set.

You can, for instance, dump vold’s internal status:
vdc dump
000 Dumping loop status
000 Dumping DM status
000 Dumping mounted filesystems
000 rootfs / rootfs ro 0 0
000 tmpfs /dev tmpfs rw,mode=755 0 0
000 devpts /dev/pts devpts rw,mode=600 0 0
000 proc /proc proc rw 0 0
000 sysfs /sys sysfs rw 0 0
000 none /acct cgroup rw,cpuacct 0 0
000 tmpfs /mnt/asec tmpfs rw,mode=755,gid=1000 0 0
000 tmpfs /mnt/obb tmpfs rw,mode=755,gid=1000 0 0
000 none /dev/cpuctl cgroup rw,cpu 0 0
000 /dev/block/mtdblock0 /system yaffs2 ro 0 0
000 /dev/block/mtdblock1 /data yaffs2 rw,nosuid,nodev 0 0
000 /dev/block/mtdblock2 /cache yaffs2 rw,nosuid,nodev 0 0
200 dump complete

In some cases, vdc actually offers online help:

300 | Chapter 7: Android Framework

www.it-ebooks.info

http://www.it-ebooks.info/

vdc volume format
500 Usage: volume format <path>

To customize the list of storage devices for your device in 4.2/Jelly Bean, have a look at
frameworks/base/core/res/res/xml/storage_list.xml. You may want to create an overlay
version of that file in your device/acme/coyotepad/overlay/ to customize it for your
device.

netd
The Network Management Service relies on netd for critical network configuration
operations such as configuring network interfaces, setting up tethering, and running
pppd. In this case, too, netd runs as root, while the Network Management Service is part
of the System Server. netd is started by the following section of init.rc in 2.3/Gingerbread:

service netd /system/bin/netd
 socket netd stream 0660 root system

In 4.2/Jelly Bean, however, the declaration has changed:
service netd /system/bin/netd
 class main
 socket netd stream 0660 root system
 socket dnsproxyd stream 0660 root inet
 socket mdns stream 0660 root system

netd opens /dev/socket/netd and listens for connections and commands. It doesn’t take
any command-line parameters, nor does it rely on any configuration file. Like vold,
however, it has a command-line tool to communicate with it. Here’s the online help for
that command in 2.3/Gingerbread:

ndc
Usage: ndc <monitor>|<cmd> [arg1] [arg2...]

Here’s the same help on 4.2/Jelly Bean:
root@android:/ # ndc
Usage: ndc [sockname] <monitor>|<cmd> [arg1] [arg2...]

Like vdc, the command-line parameters expected by ndc are the same as those expected
by netd on its socket. And as with vold, you need to look at netd’s CommandListen
er.cpp in system/netd/ to understand its command semantics.

As with vdc, you can request netd status info with ndc:
ndc interface list
110 lo
110 eth0
110 tunl0
110 gre0
200 Interface list completed

Support Daemons | 301

www.it-ebooks.info

http://www.it-ebooks.info/

The Command Sets of vold and netd
Both vold and netd are constructed using the same C++ mechanism provided by libsy
sutils and rely on a CommandListener.cpp to parse and dispatch commands sent to them.
To understand the specific commands accepted by each, have a look at the constructors
in CommandListener.cpp:

CommandListener::CommandListener() :
 FrameworkListener("...") {
...

Each will contain calls to registerCmd(), which register objects defined farther below
in the same file. Here’s an excerpt from vold for the dump command in 2.3/Gingerbread:

CommandListener::CommandListener() :
 FrameworkListener("vold") {
 registerCmd(new DumpCmd());
 registerCmd(new VolumeCmd());
...
CommandListener::DumpCmd::DumpCmd() :
 VoldCommand("dump") {
}

int CommandListener::DumpCmd::runCommand(SocketClient *cli,
 int argc, char **argv) {
 cli->sendMsg(0, "Dumping loop status", false);
 if (Loop::dumpState(cli)) {
 cli->sendMsg(ResponseCode::CommandOkay, "Loop dump failed", true);
 }
...

Every command accepted by vold or netd has a corresponding runCommand() that parses
the parameters passed to that command. By running vdc dump on the command line
as we did earlier, for instance, we’re invoking the runCommand() in the snippet above.
Conversely, typing vdc volume list will invoke the following function and pass list as
one part of the arguments:

int CommandListener::VolumeCmd::runCommand(SocketClient *cli,
 int argc, char **argv) {
...

rild
The Phone system service, which is hosted in the Phone app, uses rild to communicate
with the Baseband Processor. rild itself uses dlopen() to load a baseband-specific .so to
interface to the actual baseband hardware. As I mentioned before, rild likely exists to
ensure that the phone side of the system remains active even if a problem occurs with
the rest of the stack.

302 | Chapter 7: Android Framework

www.it-ebooks.info

http://www.it-ebooks.info/

In the case of the emulator, rild is started by this portion of the init.rc file in 2.3/Ginger‐
bread (4.2/Jelly Bean’s version is practically identical):

service ril-daemon /system/bin/rild
 socket rild stream 660 root radio
 socket rild-debug stream 660 radio system
 user root
 group radio cache inet misc audio sdcard_rw

While it doesn’t have a configuration file, rild itself can take a few command-line
parameters:

Usage: rild -l <ril impl library> [-- <args for impl library>]

If no RIL implementation library is provided on the command line, rild will attempt to
locate the library using the rild.libpath global property. If that isn’t specified either,
it’ll assume there’s no radio on the system loop around calls to sleep(). In the case of
the emulator, the system relies on /system/lib/libreference-ril.so, which, as its name im‐
plies, is a reference implementation for manufacturers that need to implement real RIL
libraries.

There are two Unix domain sockets used by rild: /dev/socket/rild, which is used by the
Phone system service, and /dev/socket/rild-debug, which can be used by the radioop‐
tions command to interact. Indeed, the latter is a command-line tool to communicate
with rild:

Usage: radiooptions [option] [extra_socket_args]
 0 - RADIO_RESET,
 1 - RADIO_OFF,
 2 - UNSOL_NETWORK_STATE_CHANGE,
 3 - QXDM_ENABLE,
 4 - QXDM_DISABLE,
 5 - RADIO_ON,
 6 apn- SETUP_PDP apn,
 7 - DEACTIVE_PDP,
 8 number - DIAL_CALL number,
 9 - ANSWER_CALL,
 10 - END_CALL

If you’d like to know more about rild and radiooptions, have a look at their sources in
hardware/ril/rild. The reference RIL implementation is itself in hardare/ril/reference-
ril/.

keystore
Unlike the rest of the daemons I’ve presented thus far, keystore doesn’t actually service
any of the system services. Instead, it’s used by a variety of different pieces of the system
for the storage and retrieval of key-value pairs. The values it maintains are mainly se‐
curity keys for connecting to networks or network infrastructure such as access points

Support Daemons | 303

www.it-ebooks.info

http://www.it-ebooks.info/

and VPNs, and the means to secure the values is a user-defined password. Clearly, the
goal of having a separate daemon for the storage of this information is to increase the
system’s overall security.

keystore is started by this portion of the init.rc file in 2.3/Gingerbread (4.2/Jelly Bean
does substantially the same):

service keystore /system/bin/keystore /data/misc/keystore
 user keystore
 group keystore
 socket keystore stream 666

keystore doesn’t have a configuration file, but it does expect to be provided with a di‐
rectory to store each key-pair value. Typically, this is /data/misc/keystore, as you can see
before. keystore then listens in to /dev/socket/keystore for connections and commands.
Several native daemons connect to keystore to retrieve keys, such as wpa_supplicant,
mtpd, and racoon. But the Settings app also connects to keystore to list and insert new
keys.

There’s also a command-line utility for communicating with keystore:
Usage: keystore_cli action [parameter ...]

You’ll find both the sources of keystore and keystore_cli in frameworks/base/cmds/
keystore/ in 2.3/Gingerbread and in system/security/keystore/ in 4.2/Jelly Bean.

Other Support Daemons
There are a few additional daemons that play a more minor role, which we won’t cover
here, such as mtpd and racoon. The former is used for VPNs and is found in external/
mtpd/, and the latter is for IPsec and is found in external/ipsec-tools/.

There are possibly, of course, other daemons that may be running on your system for
specific purposes, and/or you may want to add your own custom daemons. Have a look
back at Chapter 4 for instructions on how to add your own custom binaries to the AOSP’s
build system. Remember that if you want a daemon to be started at startup by init, you
need to add a service declaration for it in either the main init.rc or in the board-specific
init.<device_name>.rc.

Hardware Abstraction Layer
As I explained in Chapter 2, Android relies on a Hardware Abstraction Layer (HAL) to
interface with hardware. Indeed, system services almost never interact with devices
through /dev entries directly. Instead, they go through HAL modules, typically shared
libraries, to talk to hardware, as is detailed in Table 2-1.

304 | Chapter 7: Android Framework

www.it-ebooks.info

http://www.it-ebooks.info/

Android’s HAL implementation is found in hardware/. Most importantly, you’ll find
the definitions of the interfaces between the Framework and the HAL modules in header
files in hardware/libhardware/include/hardware/ and hardware/libhardware_legacy/
include/hardware_legacy/. The header files therein provide the exact API required for
each type of hardware to be supported under Android. You’ll also find example imple‐
mentations of some of those HAL modules in the sources for the lead devices in device/.

Ideally, you want to avoid having to implement your own HAL modules for existing
system services. Instead, you should query your SoC or board vendor for such modules.
HAL module writing requires intricate knowledge of the internals of the system server
that the module has to interact with and the specific Linux device driver required to
interact with the hardware. Learning how to do this right can be a very time-intensive
process, especially since the HAL interface tends to evolve with every new version of
Android. I therefore strongly recommend that you use components/boards for which
most HAL modules have already been made by the manufacturer or the SoC vendor.

Generally, given Android’s market success, component and SoC vendors make a big
effort to ensure that Android runs well with their products. This means they either
provide you with fully functional AOSPs and Android-ready kernels for eval boards,
and/or HAL modules and Linux drivers for their components. So, at the risk of sounding
redundant, implement your own HAL modules for hardware types already recognized
by Android only as a last resort. Instead, talk to your SoC or component vendor to get
your hands on the HAL modules and drivers (or kernel) required to run Android on
your hardware.

All major SoC vendors provide—in one way or another—access to
ready-to-use AOSPs and kernels for running on the eval boards. Such
is the case for TI, Qualcomm, Freescale, Samsung, and many others. If
you’re building your own custom board based on one of their designs,
I recommend that you grab those reference AOSP trees and customize
them for your own use. Attempting to start from scratch to port An‐
droid to your hardware using the AOSP trees provided directly from
Google is not likely to be a good use of your time or fit your time-to-
market requirements.

If you absolutely must implement your own HAL modules for existing system services,
then refer to the header files I alluded to previously, which define the APIs required by
each HAL module type, and take as much inspiration as possible from the reference
HAL implementations provided for the lead devices in the device/ directory. For 2.3/
Gingerbread, for example, have a look at the various lib*/ directories in device/samsung/
crespo/. In the case of 4.2/Jelly Bean, have a look at device/asus/grouper/ and device/
samsung/tuna/.

Hardware Abstraction Layer | 305

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A

Legacy User-Space

As I explained in Chapter 2, despite being based on the Linux kernel, Android bears
little resemblance to any other Linux system out there. Indeed, as you can see in
Figure 2-1, Android’s user-space, which we explored in Chapters 6 and 7, is a custom
creation of Google. Hence, if you’re familiar with “legacy” Linux systems or come from
an embedded Linux background, you may find yourself reminiscing about classic Linux
tools and components you’ve been using for a long time. This appendix will show you
how to get a legacy Linux user-space to coexist side by side with the AOSP on top of the
same Linux kernel.

Basics
To start, we need to agree on what exactly a “legacy” Linux user-space is. For the present
discussion, we’ll assume we’re talking about a Filesystem Hierarchy Standard (FHS)-
compliant root filesystem. As I mentioned earlier, Android’s root filesystem isn’t FHS-
compliant, and it crucially doesn’t use key FHS directories such as /bin and /lib, allowing
us to superimpose, side by side with it, a root filesystem that does use these directories.

Now, I’m not saying you’ll be able to use these instructions to get yourself a root file‐
system that houses both the AOSP and, say, a large distribution like Ubuntu. There are
a lot more details about Ubuntu as a distribution and the AOSP that you’d need to take
into account than resolving how to match a few of the top-level directories of the root
filesystem. Nevertheless, if you are familiar with how to create a basic root filesystem
for an embedded Linux system, it should become relatively clear how you could get
your favorite tools and libraries, such as BusyBox and glibc, loaded on the same root
filesystem as the AOSP. And if you’re interested in something more ambitious, such as
getting Ubuntu or Fedora to sit side by side with the AOSP in the same root filesystem,
these explanations offer a good introduction to getting started.

307

www.it-ebooks.info

http://www.it-ebooks.info/

Before starting on this path, though, it’s worth answering a general question on this
approach: Why bother? Indeed, why take the time to try to get any sort of legacy Linux
software package to sit on the same kernel alongside the AOSP? Why not just use the
AOSP, since it’s already got a C library, command-line tools, a rich user-space, etc.? Can’t
the AOSP do everything needed? No?

The main reason a developer would want a legacy Linux user-space alongside Android
is to be able to port existing Linux applications over to a system that runs Android
without having to port them over to Android. For instance, if you have legacy code that
works just fine on glibc, it might be easier to just get glibc onto your root filesystem than
to try to port your legacy code over to Bionic. Indeed, as you can see by reading Bionic’s
own documentation in bionic/libc/, especially those files in the docs/ directory, Bionic
has many limitations and differences when compared with something more mainstream
like glibc. It’s not Posix-compliant, for example, nor does it expose System V IPC calls.
By relying on a well-known C library such as glibc, you avoid any of these portability
issues.

Another good reason for reusing components from classic Linux systems is to avoid
having to deal with Android’s build system. As we saw in Chapter 4, Android’s build
system is nonrecursive. Therefore, if you would like to reuse large, legacy software
packages, you’d typically have to convert their build systems to use Android’s build
system .mk files. As a matter of fact, some of the very well-known packages imported
into the AOSP’s external/ directory have had their build files re-created for use within
the AOSP. D-Bus, for instance, which is traditionally based on autoconf/automake, has
had Android.mk files added to its sources in external/dbus/ so it will build within the
AOSP. None of the files originally used for its build, such as the configure script, are used
when it’s built within the AOSP. An easy way out of this is to generate a root filesystem
independently of the AOSP for those legacy packages you need and then merge the
result with the AOSP.

Put another way, there’s benefit to reusing existing legacy build systems. For example,
there’s no reason not to use something like Yocto or Buildroot to generate a root file‐
system that fits your needs and then merge the result with the AOSP. Indeed, there are
a lot of existing build systems and packaging systems that can generate very useful
output using legacy methods to mix with the AOSP. In some cases, the cost/benefit
equation might make it inconceivable to port a package’s build system over to the AOSP’s
simply because of the original project’s codebase size.

308 | Appendix A: Legacy User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

None of the present explanations should preclude you from trying to
build your legacy code against Bionic. There is a slight chance that the
changes required are marginal. Also, as I showed in Chapter 4, you can
put together Android.mk files that call on existing recursive make-based
build scripts.
Still, knowing how to circumvent Bionic is a very useful trick. So I en‐
courage you to read on.

Theory of Operation
Once you’ve decided that you want to get legacy Linux user-space components to work
alongside with the AOSP, the next question is how. This is actually a two-part question.
First, how do we get the legacy user-space and the AOSP onto the same filesystem
images? And second, how does this legacy user-space interact with the AOSP’s compo‐
nents? Let’s start by addressing the former.

Assuming you’re using a method like that covered in Building Embedded Linux Systems,
2nd ed. to generate a glibc-based root filesystem, Figure A-1 illustrates the general ap‐
proach of how this root filesystem can be made to integrate with the AOSP. Essentially,
the project environment PRJROOT is made to host the creation of a glibc-based root
filesystem. The AOSP build system is then modified to copy the contents of that root
filesystem into the images generated by the AOSP. And since the AOSP doesn’t originally
contain a /bin and a /lib, these directories will be created and populated by the contents
of the glibc-based root filesystem.

The rest of these explanations assume that you either already have a
glibc-based root filesystem that you want to merge with the AOSP or
you know how to create one. If you don’t have one and don’t know how
to create one, I recommend you take a look at Building Embedded Linux
Systems, 2nd ed. (which was originally written by yours truly).

Once the matter of merging the legacy components into the AOSP is solved, the other
key issue to discuss is how to use those components and/or interact with them within
the AOSP. Put simply, all command-line utilities and binaries can be used as is, straight
from Android’s command line. For example, if you have /bin/foo and /bin is in the
Android path, you can just go ahead and type something like adb shell and then type
foo on the command line to run the binary. There’s likely more you’ll want to do, such
as integrating into Android’s init; we’ll discuss this shortly.

Theory of Operation | 309

www.it-ebooks.info

http://www.it-ebooks.info/

Figure A-1. Merging a legacy Linux user-space with the AOSP

Basic command-line operations and init configuration aside, though, a more funda‐
mental discussion point is how to get components running on different C libraries to
communicate together. How does a daemon linked against glibc, for instance, sync with
a daemon linked against Bionic? Or how does a command-line tool linked against glibc
communicate with a Bionic-linked daemon?

Remember that despite being linked against different C libraries, everything is running
on the same kernel. Hence, whatever IPC mechanisms exist in the kernel can still be
used by whatever binary is running on it. And as you can see in Figure A-2, it’s perfectly
feasible to have a glibc-based component use regular IPC mechanisms to communicate
with a Bionic-based component within the AOSP. Sockets, for instance, are a prime
candidate, given that they’re implemented in both glibc and Bionic. System V IPC
mechanisms, on the other hand, are available only in glibc. You could also look at using
Binder, though you’d have to get libbinder to compile against glibc.

Figure A-2. Communication between a glibc-based stack and the AOSP

310 | Appendix A: Legacy User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

Many development teams I work with, for instance, have developed substantial glibc-
based stacks over the years that they typically run in embedded Linux systems. And
while working on integrating Android in their product lines, they’re often confronted
with having to make a choice between porting those stacks and their control logic over
to Bionic or figuring out a way for those legacy stacks to coexist in a friendly fashion
with the AOSP. One potential path for most of these teams is to create a setup like the
one I just described and then have the control logic of the legacy stack communicate
with newly created Android components using sockets. It’s not a silver bullet, but it’s a
useful trick to master in case it applies to your design, or to part of it.

Merging with the AOSP
Now that we’ve covered the essentials, let’s actually put this method into practice. The
first thing you’ll need, of course, is a functional legacy filesystem to merge with the
AOSP. In this specific case, assume that I followed the instructions described in Building
Embedded Linux Systems, 2nd ed. to create a root filesystem based on glibc that contains
BusyBox. Hence, we have something like this:

$ ls -l ${PRJROOT}/rootfs
total 16
drwxr-xr-x 2 karim karim 4096 2012-10-26 23:12 bin
drwxr-xr-x 2 karim karim 4096 2012-10-26 23:12 lib
lrwxrwxrwx 1 karim karim 11 2012-10-26 23:12 linuxrc -> bin/busybox
drwxr-xr-x 2 karim karim 4096 2012-10-26 23:12 sbin
drwxr-xr-x 4 karim karim 4096 2012-10-26 23:12 usr

To make things simpler, I’m going to copy that root filesystem into a new directory in
my AOSP:

$ cp -a ${PRJROOT}/rootfs path_to_my_aosp/rootfs-glibc/

I now have a rootfs-glibc directory at the top level of my AOSP. This directory won’t be
of much use, however, given that there’s no Android.mk that takes it into account, and
if you build the AOSP at this point, it’ll be completely ignored. To fix this, we can create
such an Android.mk to force the AOSP’s build system to copy the content of our glibc-
based root filesystem. Here’s my rootfs-glibc/Android.mk, as an example of making this
work in 2.3/Gingerbread:

LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)

This part is a hack, we're doing "addprefix" because if we don't,
this dependency will be stripped out by the build system
GLIBC_ROOTFS := $(addprefix $(TARGET_ROOT_OUT)/, rootfs-glibc)

$(GLIBC_ROOTFS):
mkdir -p $(TARGET_ROOT_OUT)
cp -af $(TOPDIR)rootfs-glibc/* $(TARGET_ROOT_OUT)

Merging with the AOSP | 311

www.it-ebooks.info

http://www.it-ebooks.info/

rm $(TARGET_ROOT_OUT)/Android.mk
The last command just gets rid of this very .mk since it's copied as is

ALL_PREBUILT += $(GLIBC_ROOTFS)

This will cause the content of rootfs-glibc to be merged into the ramdisk.img generated
by the AOSP. That, though, is insufficient to make our glibc-based stack function prop‐
erly on the resulting root filesystem. Indeed, as I explained in Chapter 6, the filesystem
permissions of all files in the rootfs are dictated by the system/core/include/private/
android_filesystem_config.h, and it has to be amended in order to keep the files in
the /lib directory executable. Otherwise, the glibc components are put into the root
filesystem’s /lib directory but aren’t executable and, therefore, all the binaries linked
against glibc will fail to run. Hence, as I did in Chapter 6, you need to find the an
droid_files array in android_filesystem_config.h and modify it so that it looks some‐
thing like this in 2.3/Gingerbread:

...
 { 00750, AID_ROOT, AID_SHELL, "sbin/*" },
 { 00755, AID_ROOT, AID_ROOT, "bin/*" },
 { 00755, AID_ROOT, AID_ROOT, "lib/*" },
 { 00750, AID_ROOT, AID_SHELL, "init*" },
 { 00644, AID_ROOT, AID_ROOT, 0 },
};

With these modifications, our glibc-linked binaries will work just fine in the root file‐
system generated by the AOSP. Yet this isn’t ideal since we’re using Android’s shell and
Toolbox’s commands, both of which are severely limited when compared with BusyBox’s
capabilities. Ideally, we should use BusyBox’s shell and its command-line utilities. A few
more changes are required to make that a reality. First, we need to modify init.rc so that
the newly added /bin, which contains BusyBox’s commands, appears in the PATH prior
to /system/bin, which contains Toolbox’s commands. Here’s the modified system/core/
rootdir/init.rc from 2.3/Gingerbread:

...
setup the global environment
 export PATH /bin:/sbin:/vendor/bin:/system/sbin:/system/bin:/system/xbin
 export LD_LIBRARY_PATH /vendor/lib:/system/lib
 export ANDROID_BOOTLOGO 1
 export ANDROID_ROOT /system
...

Finally, at least in the case of 2.3/Gingerbread, we’ll want to use BusyBox’s shell instead
of the default Android shell. There are two things to change to do that. First, we need
to modify init.rc so that it uses BusyBox’s shell for the console. By default, here’s how
init.rc starts the console:

service console /system/bin/sh
...

312 | Appendix A: Legacy User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

To use BusyBox’s shell instead of the default Android shell, all we need to do is make
init.rc run /bin/sh instead of /system/bin/sh:

service console /bin/sh
...

Also, it would be great if adb shell gave us access to BusyBox’s shell as well. The shell
run by adbd on the target is defined in system/core/adb/services.c:

...
#if ADB_HOST
#define SHELL_COMMAND "/bin/sh"
#else
#define SHELL_COMMAND "/system/bin/sh"
#endif
...

All we need to do here is comment out the default and make adbd run /bin/sh instead:
...
#if ADB_HOST
#define SHELL_COMMAND "/bin/sh"
#else
//#define SHELL_COMMAND "/system/bin/sh"
#define SHELL_COMMAND "/bin/sh"
#endif
...

The sum of these changes will give us a new AOSP root filesystem that contains glibc
and BusyBox, and which uses BusyBox’s shell as its default shell and BusyBox’s com‐
mands as its default commands.

If you’re using 4.2/Jelly Bean, replacing the default shell or Toolbox’s
default commands may not be as useful as in 2.3/Gingerbread. The
reason is that the AOSP has replaced the old sh with mksh, which pro‐
vides many of the features of modern shells, and some of the Toolbox’s
basic commands, such as ls, have been fixed to remove their most ob‐
vious annoyances.

Using the Combined Stacks
Once you boot the system with the new root filesystem, you’ll get all the benefits of
having BusyBox and glibc. Here’s a shell session in 2.3/Gingerbread with Android’s shell
and Toolbox’s commands:

ls
config
cache
sdcard
acct

Using the Combined Stacks | 313

www.it-ebooks.info

http://www.it-ebooks.info/

mnt
vendor
d
etc
...
init
default.prop
data
root
dev
grep -A 5 -i "\-Xzygote" init.rc
grep: not found
ls sysTAB TAB TAB

As you can see, ls’s output is not alphabetically ordered, grep is an unrecognized com‐
mand, and tab completion simply doesn’t exist. Here are the same commands with
BusyBox:

/ # ls
acct init sdcard
bin init.goldfish.rc sys
cache init.rc system
config lib ueventd.goldfish.rc
d linuxrc ueventd.rc
data mnt usr
default.prop proc vendor
dev root
etc sbin
/ # grep -A 5 -i "\-Xzygote" init.rc
service zygote /system/bin/app_process -Xzygote /system/bin --zygote
--start-system-server
 socket zygote stream 666
 onrestart write /sys/android_power/request_state wake
 onrestart write /sys/power/state on
 onrestart restart media
 onrestart restart netd
/ # ls sysTAB TAB
sys/ system/
/ # ls sys

Furthermore, while Android’s shell doesn’t have any sort of color-coding to differentiate
file types or files from directories, BusyBox’s does, as you can see in Figure A-3.

314 | Appendix A: Legacy User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

Figure A-3. Sample BusyBox shell session

But BusyBox doesn’t stop there. In addition to including commands such as vi, thereby
allowing you to edit files straight on the target, BusyBox also includes some common
daemons like httpd and sendmail. If you try to connect to port 80 using the regular
browser on a typical Android device, you’ll get something like Figure A-4.

If BusyBox is available on your target, however, you can add a service declaration for
httpd in init.rc:

service httpd /usr/sbin/httpd
 oneshot

And then you can actually connect to it as you can see in Figure A-5—the 404 message
is in fact the proper message from the web server, indicating that there’s no in
dex.html available.

Using the Combined Stacks | 315

www.it-ebooks.info

http://www.it-ebooks.info/

Figure A-4. The browser trying to connect to localhost

Figure A-5. The browser connecting to BusyBox’s httpd

As a general rule, BusyBox’s command set is far larger than Toolbox’s. Here’s Toolbox’s
command set in 2.3/Gingerbread, for instance:

316 | Appendix A: Legacy User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

cat, chmod, chown, cmp, date, dd, df, dmesg, getevent, getprop, hd, id,
ifconfig, iftop, insmod, ioctl, ionice, kill, ln, log, ls, lsmod, lsof, mkdir,
mount, mv, nandread, netstat, newfs_msdos, notify, printenv, ps, reboot, renice,
rm, rmdir, rmmod, route, schedtop, sendevent, setconsole, setprop, sleep, smd,
start, stop, sync, toolbox, top, umount, uptime, vmstat, watchprops, wipe

4.2/Jelly Bean has about a half-dozen more commands. In contrast, here’s BusyBox’s
command set:

[, [[, acpid, add-shell, addgroup, adduser, adjtimex, arp, arping, ash, awk,
base64, basename, beep, blkid, blockdev, bootchartd, brctl, bunzip2, bzcat,
bzip2, cal, cat, catv, chat, chattr, chgrp, chmod, chown, chpasswd, chpst,
chroot, chrt, chvt, cksum, clear, cmp, comm, cp, cpio, crond, crontab, cryptpw,
cttyhack, cut, date, dc, dd, deallocvt, delgroup, deluser, depmod, devmem, df,
dhcprelay, diff, dirname, dmesg, dnsd, dnsdomainname, dos2unix, du, dumpkmap,
dumpleases, echo, ed, egrep, eject, env, envdir, envuidgid, ether-wake, expand,
expr, fakeidentd, false, fbset, fbsplash, fdflush, fdformat, fdisk, fgconsole,
fgrep, find, findfs, flock, fold, free, freeramdisk, fsck, fsck.minix, fsync,
ftpd, ftpget, ftpput, fuser, getopt, getty, grep, gunzip, gzip, halt, hd,
hdparm, head, hexdump, hostid, hostname, httpd, hush, hwclock, id, ifconfig,
ifdown, ifenslave, ifplugd, ifup, inetd, init, insmod, install, ionice, iostat,
ip, ipaddr, ipcalc, ipcrm, ipcs, iplink, iproute, iprule, iptunnel, kbd_mode,
kill, killall, killall5, klogd, last, length, less, linux32, linux64, linuxrc,
ln, loadfont, loadkmap, logger, login, logname, logread, losetup, lpd, lpq, lpr,
ls, lsattr, lsmod, lspci, lsusb, lzcat, lzma, lzop, lzopcat, makedevs, makemime,
man, md5sum, mdev, mesg, microcom, mkdir, mkdosfs, mke2fs, mkfifo, mkfs.ext2,
mkfs.minix, mkfs.vfat, mknod, mkpasswd, mkswap, mktemp, modinfo, modprobe, more,
mount, mountpoint, mpstat, mt, mv, nameif, nbd-client, nc, netstat, nice,
nmeter, nohup, nslookup, ntpd, od, openvt, passwd, patch, pgrep, pidof, ping,
ping6, pipe_progress, pivot_root, pkill, pmap, popmaildir, poweroff, powertop,
printenv, printf, ps, pscan, pwd, raidautorun, rdate, rdev, readahead, readlink,
readprofile, realpath, reboot, reformime, remove-shell, renice, reset, resize,
rev, rm, rmdir, rmmod, route, rpm, rpm2cpio, rtcwake, run-parts, runlevel,
runsv, runsvdir, rx, script, scriptreplay, sed, sendmail, seq, setarch,
setconsole, setfont, setkeycodes, setlogcons, setsid, setuidgid, sh, sha1sum,
sha256sum, sha512sum, showkey, slattach, sleep, smemcap, softlimit, sort, split,
start-stop-daemon, stat, strings, stty, su, sulogin, sum, sv, svlogd, swapoff,
swapon, switch_root, sync, sysctl, syslogd, tac, tail, tar, tcpsvd, tee, telnet,
telnetd, test, tftp, tftpd, time, timeout, top, touch, tr, traceroute,
traceroute6, true, tty, ttysize, tunctl, udhcpc, udhcpd, udpsvd, umount, uname,
unexpand, uniq, unix2dos, unlzma, unlzop, unxz, unzip, uptime, usleep, uudecode,
uuencode, vconfig, vi, vlock, volname, wall, watch, watchdog, wc, wget, which,
who, whoami, xargs, xz, xzcat, yes, zcat, zcip

Hence, even if you were to include BusyBox during development only and stripped it
out for the production images, the benefits are obvious. In fact, if you’ve been used to
BusyBox, being forced to use plain Toolbox is likely akin to torture.

Also, if you look in /lib, you’ll find all the regular glibc components you’re used to,
whereas none of this exists if you’re using the plain AOSP:

/ # ls /lib
ld-2.9.so libm-2.9.so libnss_nisplus-2.9.so

Using the Combined Stacks | 317

www.it-ebooks.info

http://www.it-ebooks.info/

ld-linux.so.3 libm.so.6 libnss_nisplus.so.2
libBrokenLocale-2.9.so libmemusage.so libpcprofile.so
libBrokenLocale.so.1 libnsl-2.9.so libpthread-2.9.so
libSegFault.so libnsl.so.1 libpthread.so.0
libanl-2.9.so libnss_compat-2.9.so libresolv-2.9.so
libanl.so.1 libnss_compat.so.2 libresolv.so.2
libc-2.9.so libnss_dns-2.9.so librt-2.9.so
libc.so.6 libnss_dns.so.2 librt.so.1
libcrypt-2.9.so libnss_files-2.9.so libthread_db-1.0.so
libcrypt.so.1 libnss_files.so.2 libthread_db.so.1
libdl-2.9.so libnss_hesiod-2.9.so libutil-2.9.so
libdl.so.2 libnss_hesiod.so.2 libutil.so.1
libgcc_s.so libnss_nis-2.9.so
libgcc_s.so.1 libnss_nis.so.2

Caveats and Pending Issues
Now that you can see what can be done, let’s look at what this type of configuration
entails. First, the new C library and whatever binaries you’re adding are going to make
the root filesystem larger. Whereas the default ramdisk.img built by a 2.3.x AOSP is
about 144KB, the one containing the glibc and BusyBox above is 2.6MB. You can of
course trim the glibc-based root filesystem as embedded Linux developers have always
done, by removing unnecessary glibc components and using the strip command. It may
also be that storage is a nonissue in your embedded system. After all, on this same build,
system.img is 66MB.

You could, of course, also install glibc libraries in another location
from /lib and avoid using /bin if you wanted to. For instance, you could
create a /legacy directory and put all your legacy content in that directory
and mount it from a separate image to keep the root filesystem RAM
disk minimal in size, as it is by default. Still, it’s obviously simpler to just
use the traditional /bin and /lib as spelled out by the FHS.

There’s also the fact that you’ve now got two C libraries that need to be loaded into RAM,
Bionic and glibc. Again, this might be a nonissue in your design, but you should be
aware of this. One area where adding libraries has no impact, however, is CPU perfor‐
mance. Only the load imposed by the additional binaries you package will actually
impact the CPU.

A more subtle problem is what to do with /etc. Indeed, in Android’s root filesys‐
tem, /etc is a symbolic link to /system/etc. This is a departure from the FHS and works
fine for the AOSP. If you’ve got a legacy embedded Linux filesystem you want to merge
with the AOSP’s root filesystem, you’re going to have to make a choice. Either copy the
contents of your /etc to /system/etc and keep the symbolic link as is, or copy the contents

318 | Appendix A: Legacy User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

of /system/etc to your /etc. This is an annoyance, but it shouldn’t stop you from using
the technique explained here.

At runtime you may encounter a few quirks, because Toolbox’s tools operate under
different assumptions from their regular Linux counterparts. Usually, for instance, ps
uses /etc/passwd to match UIDs to user names. In the case of Android, there’s no /etc/
passwd. Instead, users and groups are hardcoded into the android_filesystem_config.h
file we covered earlier. Hence, BusyBox’s ps is unable to match processes with usernames:

/ # ps
PID USER TIME COMMAND
 1 0 0:08 /init
...
 26 0 0:00 /sbin/ueventd
 27 1000 0:00 /system/bin/servicemanager
 28 0 0:00 /system/bin/vold
 29 0 0:00 /system/bin/netd
 30 0 0:00 /system/bin/debuggerd
 31 1001 0:00 /system/bin/rild
 32 0 0:10 zygote /bin/app_process -Xzygote /system/bin --zygote --s
 33 1013 0:00 /system/bin/mediaserver
 34 1002 0:00 /system/bin/dbus-daemon --system --nofork
 35 0 0:00 /system/bin/installd
 36 1017 0:00 /system/bin/keystore /data/misc/keystore
 38 0 0:00 /system/bin/qemud
 40 2000 0:00 /system/bin/sh
 41 0 0:00 /sbin/adbd
 64 1000 0:22 system_server
 116 10018 0:01 com.android.inputmethod.latin
 124 1001 0:03 com.android.phone
 125 1000 0:18 com.android.systemui
...

Toolbox’s ps has no such issues:
ps
USER PID PPID VSIZE RSS WCHAN PC NAME
root 1 0 268 180 c009b74c 0000875c S /init
...
root 26 1 232 136 c009b74c 0000875c S /sbin/ueventd
system 27 1 804 188 c01a94a4 afd0b6fc S /system/bin/servicemanager
root 28 1 3864 300 ffffffff afd0bdac S /system/bin/vold
root 29 1 3836 316 ffffffff afd0bdac S /system/bin/netd
root 30 1 664 176 c01b52b4 afd0c0cc S /system/bin/debuggerd
radio 31 1 5396 432 ffffffff afd0bdac S /system/bin/rild
root 32 1 60876 16396 c009b74c afd0b844 S zygote
media 33 1 17976 1000 ffffffff afd0b6fc S /system/bin/mediaserver
bluetooth 34 1 1256 216 c009b74c afd0c59c S /system/bin/dbus-daemon
root 35 1 812 220 c02181f4 afd0b45c S /system/bin/installd
keystore 36 1 1744 200 c01b52b4 afd0c0cc S /system/bin/keystore
root 38 1 824 260 c00b8fec afd0c51c S /system/bin/qemud
shell 40 1 732 192 c0158eb0 afd0b45c S /system/bin/sh

Caveats and Pending Issues | 319

www.it-ebooks.info

http://www.it-ebooks.info/

root 41 1 3364 168 ffffffff 00008294 S /sbin/adbd
system 64 32 119832 26144 ffffffff afd0b6fc S system_server
app_18 116 32 77272 17604 ffffffff afd0c51c S com.android.inputmethod.
 latin
radio 124 32 86120 17996 ffffffff afd0c51c S com.android.phone
system 125 32 73320 19012 ffffffff afd0c51c S com.android.systemui
...

Also, Toolbox commands sometimes have different parameters from traditional Linux
commands. Toolbox’s ps for instance, accepts the -t parameter to list the threads in
addition to the processes:

ps -t
...
system 64 32 119832 26144 ffffffff afd0b6fc S system_server
system 65 64 119832 26144 c0059e24 afd0c738 S HeapWorker
system 66 64 119832 26144 c0059e24 afd0c738 S GC
system 67 64 119832 26144 c0047be8 afd0bfec S Signal Catcher
system 68 64 119832 26144 c02181f4 afd0c22c S JDWP
system 69 64 119832 26144 c0059e24 afd0c738 S Compiler
system 70 64 119832 26144 c01a94a4 afd0b6fc S Binder Thread #
system 71 64 119832 26144 c01a94a4 afd0b6fc S Binder Thread #
system 72 64 119832 26144 c0059e24 afd0c738 S SurfaceFlinger
system 74 64 119832 26144 c0047be8 afd0bfec S DisplayEventThr
system 75 64 119832 26144 c00b8fec afd0c51c S er.ServerThread
system 77 64 119832 26144 c00b8fec afd0c51c S ActivityManager
system 81 64 119832 26144 c0059f2c afd0c738 S ProcessStats
system 82 64 119832 26144 c00b8fec afd0c51c S PackageManager
system 83 64 119832 26144 c00b7db0 afd0b45c S FileObserver
system 84 64 119832 26144 c00b8fec afd0c51c S AccountManagerS
system 86 64 119832 26144 c00b8fec afd0c51c S SyncHandlerThre
...

BusyBox’s ps expects -T (uppercase T instead of lowercase t) instead and complains:
/ # ps -t
ps: invalid option -- 't'
BusyBox v1.18.3 (2011-03-09 09:33:40 PST) multi-call binary.

Usage: ps [-o COL1,COL2=HEADER] [-T]

Show list of processes

Options: -o COL1,COL2=HEADER Select columns for display -T Show threads

In most cases, these incompatibilities cause annoyances, not actual breakage. And, ul‐
timately, we haven’t gotten rid of Toolbox or any of the default AOSP commands. So
you can still invoke any of Toolbox’s commands by providing the full command path:

/ /system/bin/ps
USER PID PPID VSIZE RSS WCHAN PC NAME
root 1 0 268 180 c009b74c 0000875c S /init
root 2 0 0 0 c004e72c 00000000 S kthreadd

320 | Appendix A: Legacy User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

root 3 2 0 0 c003fdc8 00000000 S ksoftirqd/0
root 4 2 0 0 c004b2c4 00000000 S events/0
root 5 2 0 0 c004b2c4 00000000 S khelper
root 6 2 0 0 c004b2c4 00000000 S suspend
root 7 2 0 0 c004b2c4 00000000 S kblockd/0
...

There is at least one case I have noticed where putting BusyBox ahead of Toolbox in the
PATH causes breakage. In the case of dumpstate, for instance, the default ps command
from the path is used to retrieve the list of running threads. Yet, since BusyBox’s ps
expects -T instead of -t, the corresponding parts of dumpstate’s output are broken.

Another area of substantial difference worth mentioning is name resolution. Indeed,
the way Android manages DNSes is very different from the way it’s done in glibc and
BusyBox. So this may be an issue in your case.

Some people are of the opinion that there’s a benefit to Toolbox’s very
restricted command set: It limits that attack surface that a malicious
user or third party could leverage against the system. From that point
of view, using BusyBox would lead to an increased security risk. Caveat
emptor.

Linking BusyBox Against Bionic
As demonstrated in this section, BusyBox shines when compared with the AOSP’s de‐
fault command-line tools. So much so, in fact, that many people felt the need to get it
to work with their AOSP trees. Hence, the default tree from http://busybox.net now
contains support for Android out of the box. Namely, patches have been added to enable
the running of BusyBox against Bionic in addition to the libraries that it already sup‐
ported, such as glibc. Also, there’s an android-build script in the examples/ directory of
BusyBox’s sources for building it against a given set of AOSP sources.

Whether you link it against Bionic or glibc, however, you still have to find a way to get
it to coexist with the rest of the AOSP on the same filesystem. Hence, the above explan‐
ations remain relevant regardless of the library you link against.

Moving Forward
There’s obviously a lot more you can do with this approach than I’ve showed you. Even,
for instance, if you were to not include BusyBox or if you chose to link it against a library
other than glibc, such as uClibc or eglibc, knowing how to get a “classic” C library onto
your root filesystem is a useful trick.

Moving Forward | 321

www.it-ebooks.info

http://busybox.net
http://www.it-ebooks.info/

I would encourage you to look at projects like Buildroot and Yocto to see how you can
leverage their work to gain additional tools and libraries to merge with your AOSP, for
an even more versatile end result. Remember that Android’s vision and development
approach restricts admission to the AOSP to only the packages conforming to Google’s
plans. Your specific project may, in fact, have nothing in common with any of Google’s
current market aims, so the plain AOSP may be seriously lacking with regard to your
project.

In no way are the explanations given here the only way to achieve the targeted result.
There are many ways to skin this cat. Generally speaking, this explanation should allow
you to see that you can constructively break from the AOSP’s stringent mold and in‐
corporate into your final root filesystem elements that derive from classic embedded
Linux work. And this is huge, because it opens the door for leveraging the very large
body of work that has been created through the years for Linux in embedded systems.
This includes being able to tap into mailing lists, conferences, books, and, most impor‐
tantly, a very large development community.

322 | Appendix A: Legacy User-Space

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX B

Adding Support for New Hardware

There are cases where your embedded system includes hardware that isn’t already sup‐
ported in Android. And while some of the work you can do inside the AOSP is modular,
adding support for new types of hardware is trickier since it requires knowledge of some
of Android’s internals. This appendix shows you how to extend Android’s various layers
to support your own type of hardware.

While you may not be interested in actually adding support for new
types of hardware in your system, you might find this appendix in‐
structive if you’re trying to understand the intricate details of how the
various layers of the Android stack actually come together.
Also, while this appendix demonstrates the modifications using a 2.3/
Gingerbread codebase, the mechanisms and Java code being modified
are very similar in 4.2/Jelly Bean. Where major differences exist, they
will be pointed out in the text.

The Basics
As we discussed in Chapter 2, contrary to standard “vanilla Linux,” Android requires
more than just proper device drivers to function on hardware. It in fact defines a new
Hardware Abstraction Layer (HAL), which defines an API for each type of hardware
supported by Android’s core. In order for a hardware component to properly interface
with Android, it must have a corresponding hardware “module” (unrelated to kernel
modules) that conforms to the API specified for that type of hardware.

Generally, each type of hardware supported by Android has a corresponding system
service and HAL definition. There’s a Lights Service and a lights HAL definition. There’s
a Wifi Service and a WiFi HAL definition. The same goes for power management, lo‐
cation, sensors, etc. Figure 2-3 illustrates the overall architecture of Android’s hardware

323

www.it-ebooks.info

http://www.it-ebooks.info/

support. Most of these system services are, of course, typically running within the Sys‐
tem Server as we discussed earlier.

There are two general categories of HAL modules: those loaded explicitly (through a
runtime call to dlopen()) and those automatically loaded by the dynamic linker (since
they’re all linked into libhardware_legacy.so). The APIs for the former are in hardware/
libhardware/include/hardware/, and the APIs for the latter are in hardware/libhard
ware_legacy/include/hardware_legacy/. The trend seems to be that Android is moving
away from “legacy.” The interface between those .so files and the actual drivers
through /dev entries or otherwise is up to the manufacturer to specify. Android doesn’t
care about that. It cares only about finding the appropriate HAL .so modules.

One of the questions I often get is, “How do I add support for my own type of hardware
in Android?” To illustrate this, I’ve created an opersys-hal-hw type and have posted the
code that implements this HAL type on GitHub, along with a very basic circular buffer
driver.

If you copy the content of the opersys-hal-hw project over an existing 2.3.7_r1 release
of the AOSP and build it for the emulator, you should get yourself an image that comes
up with the opersys service. The latter relies on the circular buffer to implement a very
basic new hardware type. Obviously, this is but a skeleton to give you an idea of what it
takes to add support for a new hardware type. Your hardware is likely going to have
completely different interfaces.

The System Service
To illustrate how a new system service is implemented, I first added a OpersysSer
vice.java in frameworks/base/services/java/com/android/server/. This file implements
the OpersysService class, which provides two very basic calls to the outside world:

 public String read(int maxLength)
 {
...
 }

 public int write(String mString)
 {
...
 }

If you follow the code for the new type of hardware, you will see how I added an im‐
plementation corresponding to each of these calls at every layer of Android. So, for
example, if you look at the system service’s read() function, it does something like this:

 public String read(int maxLength)
 {
 int length;

324 | Appendix B: Adding Support for New Hardware

www.it-ebooks.info

https://github.com/opersys/opersys-hal-hw
https://github.com/opersys/circular-driver
https://github.com/opersys/circular-driver
http://www.it-ebooks.info/

 byte[] buffer = new byte[maxLength];

 length = read_native(mNativePointer, buffer);
 return new String(buffer, 0, length);
 }

The most important part here being the call to read_native(), which is itself declared
as follows in the OpersysService class:

 private static native int read_native(int ptr, byte[] buffer);

By declaring the method as native, we instruct the compiler not to look for the method
in any Java code. Instead, it’ll be provided to Dalvik at runtime through JNI. And, indeed,
if you look at the frameworks/base/services/jni/ directory, you’ll notice that An
droid.mk and onload.cpp have been modified to take into account a new com_an
droid_server_OpersysService.cpp. The latter has a register_android_server_Opersys
Service() function which is called at the loading of libandroid_servers.so, which is itself
generated by the Android.mk I just mentioned. That registration function tells Dalvik
about the native methods implemented in com_android_server_OpersysService.cpp for
the OpersysService class and how they can be called:

static JNINativeMethod method_table[] = {
 { "init_native", "()I", (void*)init_native },
 { "finalize_native", "(I)V", (void*)finalize_native },
 { "read_native", "(I[B)I", (void*)read_native },
 { "write_native", "(I[B)I", (void*)write_native },
 { "test_native", "(II)I", (void*)test_native},
};

int register_android_server_OpersysService(JNIEnv *env)
{
 return jniRegisterNativeMethods(env, "com/android/server/OpersysService",
 method_table, NELEM(method_table));

};

The above structure contains three fields per method. The first field is the name of the
method as defined in the Java class, while the last field is the corresponding C imple‐
mentation in the present file. In this case the names match, as they do in most cases in
Android, but that doesn’t have to be the case. The middle parameter might seem a little
bit more mysterious. The content of the parentheses are the parameters passed from
Java, and the letter on the right of the parentheses is the return value. init_native()
for instance takes no parameters and returns an integer, while read_native() has two
parameters, an integer, and a byte array, and returns an integer.

The System Service | 325

www.it-ebooks.info

http://www.it-ebooks.info/

As you start playing around wtih Android’s internals, you will often
have to deal with JNI-isms such as these. I recommend you take a look
at Java Native Interface: Programmer’s Guide and Specificaition by
Sheng Liang (Addison-Wesley) for more information on the use of JNI.

And here’s the implementation of read_native():
static int read_native(JNIEnv *env, jobject clazz, int ptr, jbyteArray buffer)
{
 opersyshw_device_t* dev = (opersyshw_device_t*)ptr;
 jbyte* real_byte_array;
 int length;

 real_byte_array = env->GetByteArrayElements(buffer, NULL);

 if (dev == NULL) {
 return 0;
 }

 length = dev->read((char*) real_byte_array, env->GetArrayLength(buffer));

 env->ReleaseByteArrayElements(buffer, real_byte_array, 0);

 return length;
}

First, notice that there are two more parameters than in the JNI declaration above. All
JNI’ed calls start with the same two parameters: a handle to the VM making the call
(env), and the this object corresponding to the class making the call (clazz). Also,
notice that the byte array isn’t used as is. Instead, env->GetByteArrayElements() and
env->ReleaseByteArrayElements() are used at the begining and the end to obtain and,
later, release a C array that can be used by the present C code. Indeed, don’t forget that
JNI calls are carrying Java-typed objects into the C world. While some things (such as
integers) can be used as is, other objects (such as arrays) need to be converted before
and after use.

Most importantly, the operative part of read_native() is the call to dev->read(). But
what does this function pointer lead to? To understand that part, you need to look at
init_native():

static jint init_native(JNIEnv *env, jobject clazz)
{
 int err;
 hw_module_t* module;
 opersyshw_device_t* dev = NULL;

 err = hw_get_module(OPERSYSHW_HARDWARE_MODULE_ID, (hw_module_t const**)
 &module);
 if (err == 0) {

326 | Appendix B: Adding Support for New Hardware

www.it-ebooks.info

http://www.it-ebooks.info/

 if (module->methods->open(module, "", ((hw_device_t**) &dev)) != 0)
 return 0;
 }

 return (jint)dev;
}

Two important things are happening in this function. First, the call to hw_get_mod
ule() which requests that the HAL load the module that implements support for the
OPERSYSHW_HARDWARE_MODULE_ID type of hardware. Second, there’s the call to the loaded
module’s open() function. We’ll take a look at both of these below, but, for the moment,
note that the former will result in a .so being loaded into the system service’s address
space, and the latter will result in the hardware-specific functions implemented in that
library’s functions, such as read() and write(), being callable from com_android_serv
er_OpersysService.cpp, which is essentially the C side of the new system service we’re
adding.

The HAL and Its Extension
The HAL, which is in hardware/, provides the hw_get_module() call above. And if you
follow the code, you’ll see that hw_get_module() ends up calling the classic dlopen(),
which enables us to load a shared library into a process’s address space.

Type man dlopen on any Linux workstation if you’d like to get more
information about dlopen and its uses.

The HAL won’t, however, just load any shared library. When you request a given hard‐
ware type, it’ll look in /system/lib/hw for a filename that matches that given hardware
type and the device it’s running on. So, for instance, in the case of the present new type
of hardware, it’ll look for opersyshw.goldfish.so, goldfish being the code name for the
emulator. The actual name of the device used for the middle part of the filename is
retrieved from one of the following global properties: ro.hardware, ro.prod
uct.board, ro.board.platform, or ro.arch. Also, the shared library must have a struct
that provides HAL information and that is called HAL_MODULE_INFO_SYM_AS_STR. We’ll
see an example next.

The definition for the new hardware type itself is just another header file, in this case
opersyshw.h, along with the other hardware definitions in hardware/libhardware/
include/hardware/:

#ifndef ANDROID_OPERSYSHW_INTERFACE_H
#define ANDROID_OPERSYSHW_INTERFACE_H

The HAL and Its Extension | 327

www.it-ebooks.info

http://www.it-ebooks.info/

#include <stdint.h>
#include <sys/cdefs.h>
#include <sys/types.h>

#include <hardware/hardware.h>

__BEGIN_DECLS

#define OPERSYSHW_HARDWARE_MODULE_ID "opersyshw"

struct opersyshw_device_t {
 struct hw_device_t common;

 int (*read)(char* buffer, int length);
 int (*write)(char* buffer, int length);
 int (*test)(int value);
};

__END_DECLS

#endif // ANDROID_OPERSYSHW_INTERFACE_H

In addition to the prototype definitions for read() and write(), note that this is where
OPERSYSHW_HARDWARE_MODULE_ID is defined. The latter serves as the basis for the file‐
name looked for on the filesystem that contains the actual HAL module implementation.

The HAL Module
The theory is that each device will require a different HAL module to support a given
hardware type for Android. Phones from separate vendors, for instance, will likely use
different graphic chips and are therefore likely to have different gralloc modules. Typ‐
ically, the HAL modules are added to the AOSP sources in the lib* directory within
device/<vendor>/<product>/. In the case of the emulator, however, the virtual devices
it supports are in sdk/emulator/, so this is where the Goldfish implementation for our
type of hardware is added.

The opersyshw hardware type isn’t really fancy, and therefore the implementation for
Goldfish fits in a single file, opersyshw_qemu.c. In order for the library resulting from
the build of this file to be recognized as a real HAL module, it ends with this snippet:

static struct hw_module_methods_t opersyshw_module_methods = {
 .open = open_opersyshw
};

const struct hw_module_t HAL_MODULE_INFO_SYM = {
 .tag = HARDWARE_MODULE_TAG,
 .version_major = 1,
 .version_minor = 0,
 .id = OPERSYSHW_HARDWARE_MODULE_ID,

328 | Appendix B: Adding Support for New Hardware

www.it-ebooks.info

http://www.it-ebooks.info/

 .name = "Opersys HW Module",
 .author = "Opersys inc.",
 .methods = &opersyshw_module_methods,
};

Note the presence of the structure called HAL_MODULE_INFO_SYM. Furthermore, note the
opersyshw_module_methods and the open() function pointer it contains. This is the
very same open() called by init_native() earlier once the HAL module is loaded. And
here’s what the corresponding open_opersyshw() does:

static int open_opersyshw(const struct hw_module_t* module, char const* name,
 struct hw_device_t** device)
{
 struct opersyshw_device_t *dev = malloc(sizeof(struct opersyshw_device_t));
 memset(dev, 0, sizeof(*dev));

 dev->common.tag = HARDWARE_DEVICE_TAG;
 dev->common.version = 0;
 dev->common.module = (struct hw_module_t*)module;
 dev->read = opersyshw_read;
 dev->write = opersyshw_write;
 dev->test = opersyshw_test;

 device = (struct hw_device_t) dev;

 fd = open("/dev/circchar", O_RDWR);

 D("OPERSYS HW has been initialized");

 return 0;
}

This function’s main purpose is to initialize the dev struct, which is of opersyshw_de
vice_t type, the same type defined by opersyshw.h, and open the corresponding device
entry in /dev, thereby connecting to the underlying device driver loaded into the kernel.
Obviously some device drivers might require some initialization here, but for our pur‐
poses this is sufficient.

Finally, here’s what opersyshw_read() does:
int opersyshw_read(char* buffer, int length)
{
 int retval;

 D("OPERSYS HW - read()for %d bytes called", length);

 retval = read(fd, buffer, length);

 return retval;
}

The HAL Module | 329

www.it-ebooks.info

http://www.it-ebooks.info/

We’re not doing too much error-checking here, but you should in your case. For in‐
stance, we’re not even checking that the call to open the device driver succeeded. We
usually should. Still, the call path should be clear. The system service’s read() call results
in a JNI call to read_native() which, by way of the HAL, results in a call to the HAL
module’s opersyshw_read().

Existing system services and HAL components have similar types of call paths. Most,
however, have a much larger number of calls defined in their system services and there‐
fore a lot more happening in between the various layers involved in providing support
for their specific type of hardware.

Calling the System Service
Up to this point we’ve mostly focused on how the new system service interfaces to the
layers below. We haven’t yet discussed how a system service makes itself available to be
called through Binder to other system services and apps. At a bare minimum, there must
be an interface definition in order for a system service to be callable through Binder. In
the case of the opersys service, we can add a IOpersysService.aidl file to frameworks/
base/core/java/android/os/:

package android.os;
/**
* {@hide}
*/
interface IOpersysService {
 String read(int maxLength);
 int write(String mString);
}

This addition makes our system service callable from code that builds within the AOSP.
We could, for instance, add an app to device/acme/coyotepad/ or packages/apps/ and
have its onCreate() callback do something like this:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 IOpersysService om =
 IOpersysService.Stub.asInterface(ServiceManager.getService("opersys"));
 try {
 Log.d(DTAG, "Going to write to the \"opersys\" service");
 om.write("Hello Opersys");
 Log.d(DTAG, "Service returned: " + om.read(20));
 }
 catch (Exception e) {
 Log.d(DTAG, "FAILED to call service");
 e.printStackTrace();

330 | Appendix B: Adding Support for New Hardware

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 }

Notice, however, that we’re using ServiceManager.getService() to get a Binder handle
to the system service, and then we’re using IOpersysService.Stub.asInterface() to
convert this to an IOpersysService object that we can call. This works fine if we’re
building within the AOSP but won’t work for a regular app. Namely, ServiceManag
er.getService() isn’t exposed in the SDK. Also, if you’re familiar with app develop‐
ment, you’ll likely notice that this is different from the regular way that handles to system
services are usually obtained—through a call to getSystemService().

To make our system service available through an SDK we build using the AOSP, we need
to carry out a few more steps. First, we need to create a manager class that acts as a
shrink-wrap for our Binder-callable system service. We do this by adding a Opersys
Manager.java file to frameworks/base/core/java/android/os/:

package android.os;

import android.os.IOpersysService;

public class OpersysManager
{
 public String read(int maxLength) {
 try {
 return mService.read(maxLength);
 } catch (RemoteException e) {
 return null;
 }
 }

 public int write(String mString) {
 try {
 return mService.write(mString);
 } catch (RemoteException e) {
 return 0;
 }
 }

 public OpersysManager(IOpersysService service) {
 mService = service;
 }

 IOpersysService mService;
}

Note how all calls are essentially redirected to the system service through Binder. Most
predefined managers have similar semantics, although most will have some additional
logic before making the calls, and others will define more calls than those available from
the system service. This is similar to what a C library does before it makes calls to the
kernel it runs on.

Calling the System Service | 331

www.it-ebooks.info

http://www.it-ebooks.info/

To make that manager available through getSystemService(), there are two more steps
required. First, we’ll amend frameworks/base/core/java/android/content/Context.java
to recognize a new type of system service:

 /**
 * Use with {@link #getSystemService} to retrieve a
 * {@link android.os.OpersysManager} for using Opersys Service.
 *
 * @see #getSystemService
 */
 public static final String OPERSYS_SERVICE = "opersys";

Then, we’ll patch frameworks/base/core/java/android/content/app/ContextImpl.java to
make getSystemService() recognize our new system service:

 @Override
 public Object getSystemService(String name) {
 if (WINDOW_SERVICE.equals(name)) {
 return WindowManagerImpl.getDefault();
 } else if (LAYOUT_INFLATER_SERVICE.equals(name)) {
 synchronized (mSync) {
...
 } else if (DOWNLOAD_SERVICE.equals(name)) {
 return getDownloadManager();
 } else if (NFC_SERVICE.equals(name)) {
 return getNfcManager();

 } else if (OPERSYS_SERVICE.equals(name)) {
 return getOpersysManager();

...

 private OpersysManager getOpersysManager() {
 synchronized (mSync) {
 if (mOpersysManager == null) {
 IBinder b = ServiceManager.getService(OPERSYS_SERVICE);
 IOpersysService service = IOpersysService.Stub.asInterface(b);
 mOpersysManager = new OpersysManager(service);
 }
 }
 return mOpersysManager;
 }

...

332 | Appendix B: Adding Support for New Hardware

www.it-ebooks.info

http://www.it-ebooks.info/

In 4.2/Jelly Bean, getSystemService()’s internal implementation is
very different from the code shown previously. Have a look at how the
registerService() is used in the ContextImpl class in Contex
tImpl.java to declare new managers. Specifically, have a look at the way
it’s done for POWER_SERVICE. You should be able to easily adapt the above
snippet to resemble the one used to register a PowerManager object for
use by getSystemService().

And now, after we build an SDK using this AOSP, we can create an app that calls on this
new system service like any other predefined service:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 OpersysManager om = (OpersysManager) getSystemService(OPERSYS_SERVICE);

 Log.d(DTAG, "Going to write to the \"opersys\" service");
 om.write("Hello Opersys");
 Log.d(DTAG, "Service returned: " + om.read(20));
 }

Starting the System Service
There’s one last thing I haven’t explained—that’s how the system service is started in this
case. Generally, as I mentioned in Chapter 7, Java-based system services are started in
SystemServer.java. Hence, we can patch this file to have it instantiate our system service
and register it with the Service Manager:

...
 try {
 Slog.i(TAG, "DiskStats Service");
 ServiceManager.addService("diskstats",
 new DiskStatsService(context));
 } catch (Throwable e) {
 Slog.e(TAG, "Failure starting DiskStats Service", e);
 }

 try {
 Slog.i(TAG, "Opersys Service");
 ServiceManager.addService(Context.OPERSYS_SERVICE,
 new OpersysService(context));
 } catch (Throwable e) {
 Slog.e(TAG, "Failure starting OpersysService Service", e);
 }

 }
...

Starting the System Service | 333

www.it-ebooks.info

http://www.it-ebooks.info/

Caveats and Recommendations
The method I just showed you and the code I referred you to works just fine for adding
new types of hardware to the AOSP. However, it’s very version-specific since you need
to patch a few files. In essence, I showed you how to add support for a new type of
hardware in the AOSP as if it were meant to be upstreamed. Usually that won’t be your
case and, therefore, as I suggested in Chapter 4, custom extensions are better added into
a device/<manufacturer/product_name>/ directory, which you can just copy into any
new AOSP tree you get.

Despite its shortcoming, the benefit of the method I just showed is that you’ve got plenty
of examples of other system services and HAL modules already in the AOSP from which
you can easily copy, since you’re adding your code in exactly the same location as the
built-in components.

Still, you should know that there are various ways you could add a system service to
your product-specific directory in device/ in order to make a new type of hardware
accessible to apps and other system services. The most straightforward one is to create
an app that has its persistent flag set to true in its manifest file. As we discussed earlier,
apps are lifecycle-managed by the Activity Manager. Hence, implementing hardware
support in a regular app can be an issue because it could be stopped and restarted at any
time, and if hardware state must be maintained, such restarting will likely cause issues.
By enabling the persistent flag, you disable lifecycle management for this app. As I
explained in Chapter 7, the Phone app, for instance, uses this trick in order to be able
to host the Phone Service.

The downside with this approach is that any failure of the System Server, which houses
the Activity Manager, will bring your system service down. Note that the same holds
true for the method I showed you above. Another, more substantive, downside is that
there are few examples to base your work on. You’ll also need to create an SDK add-on
instead of using the plain SDK generated by the AOSP that would’ve been patched by
the method shown above. Callers to your system service won’t, for instance, be able to
use the standard getSystemService() to get a handle for an object allowing them to
talk to your system service, as is the case for the default set of system services.

You can also probably create a standalone system service in Java that is started in a
similar fashion as am and pm, using app_process. This would make your system service
immune to any failure of the System Server, but I can’t currently point you to any ex‐
amples of system services implemented this way. And again, even if you followed this
path, you’d still have a system service that doesn’t appear like the other system services
to app developers.

Finally, you could also create a native system service (i.e., in C) that starts the same way
as the mediaserver. In that case, while you’d benefit from running natively, you wouldn’t
benefit from the aidl tool’s capability to generate marshaling and unmarshaling code in

334 | Appendix B: Adding Support for New Hardware

www.it-ebooks.info

http://www.it-ebooks.info/

Java for callers and callees. Instead, you’d have to marshal and unmarshal everything
sent through Binder manually—a very tedious process. And again, your system service
will look different from standard system services.

Caveats and Recommendations | 335

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C

Customizing the Default Lists of Packages

As we saw in Chapter 4, the build system can be modified to add new packages to those
it builds by default. What we didn’t cover in that chapter is how the build system creates
the default list of packages that it uses when creating images or how we can customize
it. Obviously, playing around with something as fundamental as the default set of pack‐
ages required to get a functional AOSP has its risks, as you may end up generating stale
images. Still, it’s worth taking a look at how this works and what’s in there. If nothing
else, you’ll get a better idea of where to look in case you have to get your hands in there.

Overall Dependencies
In 2.3/Gingerbread, there are two main variables that dictate what gets included in the
AOSP: GRANDFATHERED_USER_MODULES and PRODUCT_PACKAGES. The first is generated
from a static list found in build/core/user_tags.mk and contains the bulk of the “core”
packages required for the AOSP, with such things as adbd, the system services, and
Bionic. This file isn’t meant to be edited and starts with a warning to that effect:

This is the list of modules grandfathered to use a user tag

DO NOT ADD ANY NEW MODULE TO THIS FILE
#
user modules are hard to control and audit and we don't want
to add any new such module in the system

In effect, the list of packages in GRANDFATHERED_USER_MODULES is more or less fixed in
stone—what we want to focus our attention on is the packages added to PRODUCT_PACK
AGES. There’s in fact a whole series of files that gradually help add more packages to
PRODUCT_PACKAGES, as the full list of .mk files are included one after the other, per the
product description found in the relevant files in device/<vendor>/<product>/.

In 4.2/Jelly Bean, neither GRANDFATHERED_USER_MODULES nor build/core/user_tags.mk
exist. Instead, there’s a much-trimmed-down GRANDFATHERED_ALL_PREBUILT and a

337

www.it-ebooks.info

http://www.it-ebooks.info/

build/core/legacy_prebuilts.mk that carries a warning like the previous one. The bulk of
2.3/Gingerbread’s GRANDFATHERED_USER_MODULES are now either in build/target/prod
uct/base.mk or build/target/product/core.mk and are added to PRODUCT_PACKAGES,
which is used the same way as in 2.3/Gingerbread.

Assembling the Final PRODUCT_PACKAGES
Generally speaking, products will use the inherit-product makefile function, as we
did when adding the CoyotePad in Chapter 4, to import other .mk files that include
previous declarations of the PRODUCT_PACKAGES variable on which they can build.

The core file used for most PRODUCT_PACKAGES sets is build/target/product/core.mk. In
2.3/Gingerbread, this file doesn’t inherit from any other .mk file. In 4.2/Jelly Bean, how‐
ever, it inherits from build/target/product/base.mk. In both versions, build/target/prod
uct/core.mk includes packages such as the SSL library and the Browser app. Most prod‐
uct descriptions, except the one used for building the SDK, don’t actually rely solely on
the set of packages defined in this file. Instead, they’ll at least rely on build/target/prod
uct/generic.mk in 2.3/Gingerbread and build/target/product/generic_no_telephony.mk
in 4.2/Jelly Bean, both of which rely on core.mk in addition to including packages for
many of the main apps such as Calendar, Launcher2, and Settings. The default emulator
build in 2.3/Gingerbread, for instance, relies on generic.mk. So does the default tree
provided by TI for the BeagleBone, which I used in some parts of this book.

Most products will, however, go a step further. In 2.3/Gingerbread they’ll use build/
target/product/full.mk, which depends on generic.mk, to get a few additional input
methods, such as PinyinIME (the simplified Chinese keyboard) and some language
locales. full.mk, for instance, is what’s used as the baseline for the device/samsung/cres
po/ (Nexus S). And this is what I used in Chapter 4 for the CoyotePad.

In 4.2/Jelly Bean, most products will use build/target/product/full_base.mk instead of
build/target/product/full.mk. The former depends on generic_no_telephony.mk instead
of depending on generic.mk. You can see example uses of full_base.mk in device/asus/
grouper/ and device/samsung/tuna/.

Trimming Packages
One request I often get from developers is to explain how to trim the size of the AOSP.
To do that, you’d have to go through the list of packages included in GRANDFATH
ERED_USER_MODULES if you’re using 2.3/Gingerbread or GRANDFATHERED_ALL_PRE
BUILT if you’re using 4.2/Jelly Bean and PRODUCT_PACKAGES in either case and remove
whatever you think isn’t necessary for your system. As I alluded to earlier, this is a tricky
proposition because you’re likely to generate a nonfunctional AOSP. Indeed, the AOSP’s
build system doesn’t provide any type of dependency checks between packages.

338 | Appendix C: Customizing the Default Lists of Packages

www.it-ebooks.info

http://www.it-ebooks.info/

You can, however, proceed with a few basic rules. Generally, I would recommend against
trying to play around with the list of grandfathered packages or the packages in base.mk
in 4.2/Jelly Bean, unless you feel pretty confident that you understand the AOSP’s in‐
ternals and the impact of the changes you’re making. Starting with core.mk, you’re in a
little bit safer territory for removing packages. And the further you are down in the
dependency chain from core.mk, the safer it is to remove modules without causing AOSP
breakage. You can, for instance, remove the Launcher2 from generic.mk in 2.3/Ginger‐
bread or from generic_no_telephony.mk in 4.2/Jelly Bean, and you’ll generate a func‐
tional AOSP. It won’t have the home screen you’re used to, but it’ll still work. The same
goes for many of the apps in those same files.

Trimming Packages | 339

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

1. Both files are configuration files part of the AOSP sources and are therefore assumed to be licensed under
the Apache license.

APPENDIX D

Default init.rc Files

This appendix contains the default init.rc files found in 2.3/Gingerbread and 4.2/Jelly
Bean.1 I usually dislike books where files are printed for pages on end, and you won’t
find much of this in my writings. However, init.rc is one case where the best way to
explain something is to actually show it to you. To make it easier for you to follow the
operations conducted in the file, I’ve added some callouts throughout to provide insight
on key parts of the files. Refer to Chapter 6 for more information regarding the actions,
triggers, commands, services, and service options used in init.rc files.

2.3/Gingerbread’s default init.rc
on early-init
 start ueventd

on init

sysclktz 0

loglevel 3

setup the global environment
 export PATH /sbin:/vendor/bin:/system/sbin:/system/bin:/system/xbin
 export LD_LIBRARY_PATH /vendor/lib:/system/lib
 export ANDROID_BOOTLOGO 1
 export ANDROID_ROOT /system
 export ANDROID_ASSETS /system/app
 export ANDROID_DATA /data
 export EXTERNAL_STORAGE /mnt/sdcard
 export ASEC_MOUNTPOINT /mnt/asec

341

www.it-ebooks.info

http://www.it-ebooks.info/

 export LOOP_MOUNTPOINT /mnt/obb
 export BOOTCLASSPATH /system/framework/core.jar:/system/framework/bouncycast
le.jar:/system/framework/ext.jar:/system/framework/framework.jar:/system/framewo
rk/android.policy.jar:/system/framework/services.jar:/system/framework/core-juni
t.jar

Backward compatibility
 symlink /system/etc /etc
 symlink /sys/kernel/debug /d

Right now vendor lives on the same filesystem as system,
but someday that may change.
 symlink /system/vendor /vendor

create mountpoints
 mkdir /mnt 0775 root system
 mkdir /mnt/sdcard 0000 system system

Create cgroup mount point for cpu accounting
 mkdir /acct
 mount cgroup none /acct cpuacct
 mkdir /acct/uid

Backwards Compat - XXX: Going away in G*
 symlink /mnt/sdcard /sdcard

 mkdir /system
 mkdir /data 0771 system system
 mkdir /cache 0770 system cache
 mkdir /config 0500 root root

 # Directory for putting things only root should see.
 mkdir /mnt/secure 0700 root root

 # Directory for staging bindmounts
 mkdir /mnt/secure/staging 0700 root root

 # Directory-target for where the secure container
 # imagefile directory will be bind-mounted
 mkdir /mnt/secure/asec 0700 root root

 # Secure container public mount points.
 mkdir /mnt/asec 0700 root system
 mount tmpfs tmpfs /mnt/asec mode=0755,gid=1000

 # Filesystem image public mount points.
 mkdir /mnt/obb 0700 root system
 mount tmpfs tmpfs /mnt/obb mode=0755,gid=1000

 write /proc/sys/kernel/panic_on_oops 1
 write /proc/sys/kernel/hung_task_timeout_secs 0
 write /proc/cpu/alignment 4

342 | Appendix D: Default init.rc Files

www.it-ebooks.info

http://www.it-ebooks.info/

 write /proc/sys/kernel/sched_latency_ns 10000000
 write /proc/sys/kernel/sched_wakeup_granularity_ns 2000000
 write /proc/sys/kernel/sched_compat_yield 1
 write /proc/sys/kernel/sched_child_runs_first 0

Create cgroup mount points for process groups
 mkdir /dev/cpuctl
 mount cgroup none /dev/cpuctl cpu
 chown system system /dev/cpuctl
 chown system system /dev/cpuctl/tasks
 chmod 0777 /dev/cpuctl/tasks
 write /dev/cpuctl/cpu.shares 1024

 mkdir /dev/cpuctl/fg_boost
 chown system system /dev/cpuctl/fg_boost/tasks
 chmod 0777 /dev/cpuctl/fg_boost/tasks
 write /dev/cpuctl/fg_boost/cpu.shares 1024

 mkdir /dev/cpuctl/bg_non_interactive
 chown system system /dev/cpuctl/bg_non_interactive/tasks
 chmod 0777 /dev/cpuctl/bg_non_interactive/tasks
 # 5.0 %
 write /dev/cpuctl/bg_non_interactive/cpu.shares 52

on fs
mount mtd partitions
 # Mount /system rw first to give the filesystem a chance to save a checkpoint
 mount yaffs2 mtd@system /system
 mount yaffs2 mtd@system /system ro remount
 mount yaffs2 mtd@userdata /data nosuid nodev
 mount yaffs2 mtd@cache /cache nosuid nodev

on post-fs
 # once everything is setup, no need to modify /
 mount rootfs rootfs / ro remount

 # We chown/chmod /data again so because mount is run as root + defaults
 chown system system /data
 chmod 0771 /data

 # Create dump dir and collect dumps.
 # Do this before we mount cache so eventually we can use cache for
 # storing dumps on platforms which do not have a dedicated dump partition.

 mkdir /data/dontpanic
 chown root log /data/dontpanic
 chmod 0750 /data/dontpanic

 # Collect apanic data, free resources and re-arm trigger
 copy /proc/apanic_console /data/dontpanic/apanic_console
 chown root log /data/dontpanic/apanic_console
 chmod 0640 /data/dontpanic/apanic_console

2.3/Gingerbread’s default init.rc | 343

www.it-ebooks.info

http://www.it-ebooks.info/

 copy /proc/apanic_threads /data/dontpanic/apanic_threads
 chown root log /data/dontpanic/apanic_threads
 chmod 0640 /data/dontpanic/apanic_threads

 write /proc/apanic_console 1

 # Same reason as /data above
 chown system cache /cache
 chmod 0770 /cache

 # This may have been created by the recovery system with odd permissions
 chown system cache /cache/recovery
 chmod 0770 /cache/recovery

 #change permissions on vmallocinfo so we can grab it from bugreports
 chown root log /proc/vmallocinfo
 chmod 0440 /proc/vmallocinfo

 #change permissions on kmsg & sysrq-trigger so bugreports can grab kthread
 stacks
 chown root system /proc/kmsg
 chmod 0440 /proc/kmsg
 chown root system /proc/sysrq-trigger
 chmod 0220 /proc/sysrq-trigger

create basic filesystem structure
 mkdir /data/misc 01771 system misc
 mkdir /data/misc/bluetoothd 0770 bluetooth bluetooth
 mkdir /data/misc/bluetooth 0770 system system
 mkdir /data/misc/keystore 0700 keystore keystore
 mkdir /data/misc/vpn 0770 system system
 mkdir /data/misc/systemkeys 0700 system system
 mkdir /data/misc/vpn/profiles 0770 system system
 # give system access to wpa_supplicant.conf for backup and restore
 mkdir /data/misc/wifi 0770 wifi wifi
 chmod 0770 /data/misc/wifi
 chmod 0660 /data/misc/wifi/wpa_supplicant.conf
 mkdir /data/local 0771 shell shell
 mkdir /data/local/tmp 0771 shell shell
 mkdir /data/data 0771 system system
 mkdir /data/app-private 0771 system system
 mkdir /data/app 0771 system system
 mkdir /data/property 0700 root root

 # create dalvik-cache and double-check the perms
 mkdir /data/dalvik-cache 0771 system system
 chown system system /data/dalvik-cache
 chmod 0771 /data/dalvik-cache

 # create the lost+found directories, so as to enforce our permissions
 mkdir /data/lost+found 0770

344 | Appendix D: Default init.rc Files

www.it-ebooks.info

http://www.it-ebooks.info/

 mkdir /cache/lost+found 0770

 # double check the perms, in case lost+found already exists, and set owner
 chown root root /data/lost+found
 chmod 0770 /data/lost+found
 chown root root /cache/lost+found
 chmod 0770 /cache/lost+found

on boot
basic network init
 ifup lo
 hostname localhost
 domainname localdomain

set RLIMIT_NICE to allow priorities from 19 to -20
 setrlimit 13 40 40

Define the oom_adj values for the classes of processes that can be
killed by the kernel. These are used in ActivityManagerService.
 setprop ro.FOREGROUND_APP_ADJ 0
 setprop ro.VISIBLE_APP_ADJ 1
 setprop ro.PERCEPTIBLE_APP_ADJ 2
 setprop ro.HEAVY_WEIGHT_APP_ADJ 3
 setprop ro.SECONDARY_SERVER_ADJ 4
 setprop ro.BACKUP_APP_ADJ 5
 setprop ro.HOME_APP_ADJ 6
 setprop ro.HIDDEN_APP_MIN_ADJ 7
 setprop ro.EMPTY_APP_ADJ 15

Define the memory thresholds at which the above process classes will
be killed. These numbers are in pages (4k).
 setprop ro.FOREGROUND_APP_MEM 2048
 setprop ro.VISIBLE_APP_MEM 3072
 setprop ro.PERCEPTIBLE_APP_MEM 4096
 setprop ro.HEAVY_WEIGHT_APP_MEM 4096
 setprop ro.SECONDARY_SERVER_MEM 6144
 setprop ro.BACKUP_APP_MEM 6144
 setprop ro.HOME_APP_MEM 6144
 setprop ro.HIDDEN_APP_MEM 7168
 setprop ro.EMPTY_APP_MEM 8192

Write value must be consistent with the above properties.
Note that the driver only supports 6 slots, so we have combined some of
the classes into the same memory level; the associated processes of higher
classes will still be killed first.
 write /sys/module/lowmemorykiller/parameters/adj 0,1,2,4,7,15

 write /proc/sys/vm/overcommit_memory 1
 write /proc/sys/vm/min_free_order_shift 4
 write /sys/module/lowmemorykiller/parameters/minfree 2048,3072,4096,6144,
 7168,8192

2.3/Gingerbread’s default init.rc | 345

www.it-ebooks.info

http://www.it-ebooks.info/

 # Set init its forked children's oom_adj.
 write /proc/1/oom_adj -16

 # Tweak background writeout
 write /proc/sys/vm/dirty_expire_centisecs 200
 write /proc/sys/vm/dirty_background_ratio 5

 # Permissions for System Server and daemons.
 chown radio system /sys/android_power/state
 chown radio system /sys/android_power/request_state
 chown radio system /sys/android_power/acquire_full_wake_lock
 chown radio system /sys/android_power/acquire_partial_wake_lock
 chown radio system /sys/android_power/release_wake_lock
 chown radio system /sys/power/state
 chown radio system /sys/power/wake_lock
 chown radio system /sys/power/wake_unlock
 chmod 0660 /sys/power/state
 chmod 0660 /sys/power/wake_lock
 chmod 0660 /sys/power/wake_unlock
 chown system system /sys/class/timed_output/vibrator/enable
 chown system system /sys/class/leds/keyboard-backlight/brightness
 chown system system /sys/class/leds/lcd-backlight/brightness
 chown system system /sys/class/leds/button-backlight/brightness
 chown system system /sys/class/leds/jogball-backlight/brightness
 chown system system /sys/class/leds/red/brightness
 chown system system /sys/class/leds/green/brightness
 chown system system /sys/class/leds/blue/brightness
 chown system system /sys/class/leds/red/device/grpfreq
 chown system system /sys/class/leds/red/device/grppwm
 chown system system /sys/class/leds/red/device/blink
 chown system system /sys/class/leds/red/brightness
 chown system system /sys/class/leds/green/brightness
 chown system system /sys/class/leds/blue/brightness
 chown system system /sys/class/leds/red/device/grpfreq
 chown system system /sys/class/leds/red/device/grppwm
 chown system system /sys/class/leds/red/device/blink
 chown system system /sys/class/timed_output/vibrator/enable
 chown system system /sys/module/sco/parameters/disable_esco
 chown system system /sys/kernel/ipv4/tcp_wmem_min
 chown system system /sys/kernel/ipv4/tcp_wmem_def
 chown system system /sys/kernel/ipv4/tcp_wmem_max
 chown system system /sys/kernel/ipv4/tcp_rmem_min
 chown system system /sys/kernel/ipv4/tcp_rmem_def
 chown system system /sys/kernel/ipv4/tcp_rmem_max
 chown root radio /proc/cmdline

Define TCP buffer sizes for various networks
ReadMin, ReadInitial, ReadMax, WriteMin, WriteInitial, WriteMax,
 setprop net.tcp.buffersize.default 4096,87380,110208,4096,16384,110208
 setprop net.tcp.buffersize.wifi 4095,87380,110208,4096,16384,110208
 setprop net.tcp.buffersize.umts 4094,87380,110208,4096,16384,110208
 setprop net.tcp.buffersize.edge 4093,26280,35040,4096,16384,35040

346 | Appendix D: Default init.rc Files

www.it-ebooks.info

http://www.it-ebooks.info/

 setprop net.tcp.buffersize.gprs 4092,8760,11680,4096,8760,11680

 class_start default

Daemon processes to be run by init.
##
service ueventd /sbin/ueventd
 critical

service console /system/bin/sh
 console
 disabled
 user shell
 group log

on property:ro.secure=0
 start console

adbd is controlled by the persist.service.adb.enable system property
service adbd /sbin/adbd
 disabled

adbd on at boot in emulator
on property:ro.kernel.qemu=1
 start adbd

on property:persist.service.adb.enable=1
 start adbd

on property:persist.service.adb.enable=0
 stop adbd

service servicemanager /system/bin/servicemanager
 user system
 critical
 onrestart restart zygote
 onrestart restart media

service vold /system/bin/vold
 socket vold stream 0660 root mount
 ioprio be 2

service netd /system/bin/netd
 socket netd stream 0660 root system

service debuggerd /system/bin/debuggerd

service ril-daemon /system/bin/rild
 socket rild stream 660 root radio
 socket rild-debug stream 660 radio system
 user root
 group radio cache inet misc audio sdcard_rw

2.3/Gingerbread’s default init.rc | 347

www.it-ebooks.info

http://www.it-ebooks.info/

service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-sys
tem-server
 socket zygote stream 666
 onrestart write /sys/android_power/request_state wake
 onrestart write /sys/power/state on
 onrestart restart media
 onrestart restart netd

service media /system/bin/mediaserver
 user media
 group system audio camera graphics inet net_bt net_bt_admin net_raw
 ioprio rt 4

service bootanim /system/bin/bootanimation
 user graphics
 group graphics
 disabled
 oneshot

service dbus /system/bin/dbus-daemon --system --nofork
 socket dbus stream 660 bluetooth bluetooth
 user bluetooth
 group bluetooth net_bt_admin

service bluetoothd /system/bin/bluetoothd -n
 socket bluetooth stream 660 bluetooth bluetooth
 socket dbus_bluetooth stream 660 bluetooth bluetooth
 # init.rc does not yet support applying capabilities, so run as root and
 # let bluetoothd drop uid to bluetooth with the right linux capabilities
 group bluetooth net_bt_admin misc
 disabled

service hfag /system/bin/sdptool add --channel=10 HFAG
 user bluetooth
 group bluetooth net_bt_admin
 disabled
 oneshot

service hsag /system/bin/sdptool add --channel=11 HSAG
 user bluetooth
 group bluetooth net_bt_admin
 disabled
 oneshot

service opush /system/bin/sdptool add --channel=12 OPUSH
 user bluetooth
 group bluetooth net_bt_admin
 disabled
 oneshot

service pbap /system/bin/sdptool add --channel=19 PBAP

348 | Appendix D: Default init.rc Files

www.it-ebooks.info

http://www.it-ebooks.info/

2. See the man page for klogctl() for more details as to the specific effect of this.

 user bluetooth
 group bluetooth net_bt_admin
 disabled
 oneshot

service installd /system/bin/installd
 socket installd stream 600 system system

service flash_recovery /system/etc/install-recovery.sh
 oneshot

service racoon /system/bin/racoon
 socket racoon stream 600 system system
 # racoon will setuid to vpn after getting necessary resources.
 group net_admin
 disabled
 oneshot

service mtpd /system/bin/mtpd
 socket mtpd stream 600 system system
 user vpn
 group vpn net_admin net_raw
 disabled
 oneshot

service keystore /system/bin/keystore /data/misc/keystore
 user keystore
 group keystore
 socket keystore stream 666

service dumpstate /system/bin/dumpstate -s
 socket dumpstate stream 0660 shell log
 disabled
 oneshot

The early-init action is the earliest part of the init.rc that is executed, per the
list of actions and triggers run by init, as explained in Chapter 6. As you can see,
only ueventd is run here. In fact, the next step performed by init during its
initialization is to check that ueventd was properly started as part of early-init.
The init action is the first major chunk of commands that init is made to run.
It sets the time zone to GMT, sets the log level to 3,2 exports a core set of
environment variables, and proceeds to conduct a number of filesystem
operations on the root filesystem.

2.3/Gingerbread’s default init.rc | 349

www.it-ebooks.info

http://www.it-ebooks.info/

This part of the initialization is pretty important. This is where the default PATH
for all binaries in the system is set. This is also where the dynamic linker’s default
search path, LD_LIBRARY_PATH, is set. Note that /bin isn’t in PATH and /lib isn’t in
LD_LIBRARY_PATH.
Here, some of the kernel’s parameters are tweaked by way of writing values
to /proc entries. This and writing values to /sys entries are common ways of
controlling the kernel and/or drivers’ behavior.
The fs action is where the /system, /data, and /cache partitions are mounted. Note
that by default this config file attempts to mount those from MTD partitions using
the YAFFS2 filesystem. Your board may neither have MTD devices nor use
YAFFS2. In that case, these commands will fail, and that’s fine. Nothing precludes
you from having an fs action in your board-specific .rc file that mounts other
partitions using other filesystems.
The post-fs action is where all filesystem commands that depend on all
filesystems having been mounted to operate properly are executed. Again, a large
number of filesystem operations are being conducted here.
The boot action is executed once all filesystems are set up, and by the end of the
set of commands in here, the entire set of services will be started. This section
starts by setting up the basic network functionality, sets up the OOM adjustments
and memory thresholds used by the Activity Manager and the kernel, sets
permissions for allowing the system server to access entries in /sys, sets
networking properties, and finally starts all default services.
This set of /proc and /sys operations are the way that the low-memory driver,
which we discussed in Chapter 2, has its parameters set from user-space.
This seemingly innocuous command is actually one of the most important ones
in this file. All the services you see declared later in the file are started by this
command. The fact is that any service declared in an .rc file is set to have de
fault as its class, unless a specific class option is used in the service’s description.
And since none of the services listed in this file contains a specific class option,
they’re all part of the default class and started by this class_start command.
Now that the majority of actions have been defined, the rest of the file focuses on
describing the services to run. Since they’re all part of the default class, they are
started in the order they are found in the file.
Notice how adbd is set to be disabled at startup unless the persist.ser
vice.adb.enable property is set to 1.
This is the all-important Service Manager, which we covered in Chapter 2. Note
how it’s marked as critical, and its restarting will cause the System Server and
Media Service to restart.

350 | Appendix D: Default init.rc Files

www.it-ebooks.info

http://www.it-ebooks.info/

This is the Zygote, also described in Chapter 2. Note how the actual binary being
started is app_process. The latter is in fact a C-based binary that is made to start
a Dalvik VM instance, which the Zygote Java class is started from. From there,
the System Server will be started by the Zygote.
This is the Media Server proper. Notice how its I/O nice value is set to mimic the
“real time” scheduler and how its priority is set to 4.
This dumpstate is necessary for Toolbox’s bugreport command to operate
properly. See the explanation in Chapter 6 about bugreport for more information
on how it interacts with dumpstate.

4.2/Jelly Bean’s Default init Files
Unlike 2.3/Gingerbread, 4.2/Jelly Bean has three main .rc files for all builds: init.rc,
init.usb.rc, and init.trace.rc. Let’s take a look at these.

init.rc
Here’s the main init.rc from 4.2/Jelly Bean. As you can see by comparing this version
with 2.3/Gingerbread’s, many of the important parts have remained unchanged. Still,
some novelties have appeared in this newer version that are worth highlighting.

Even if you’re using 4.2/Jelly Bean, I would recommend reading the
previous section about 2.3/Gingerbread’s init.rc before reading this one,
as I’m not repeating explanations I’ve already made for the latter.

Copyright (C) 2012 The Android Open Source Project
#
IMPORTANT: Do not create world writable files or directories.
This is a common source of Android security bugs.
#

import /init.usb.rc
import /init.${ro.hardware}.rc
import /init.trace.rc

on early-init
 # Set init and its forked children's oom_adj.
 write /proc/1/oom_adj -16

 # Set the security context for the init process.
 # This should occur before anything else (e.g. ueventd) is started.
 setcon u:r:init:s0

 start ueventd

4.2/Jelly Bean’s Default init Files | 351

www.it-ebooks.info

http://www.it-ebooks.info/

create mountpoints
 mkdir /mnt 0775 root system

on init

sysclktz 0

loglevel 3

setup the global environment
 export PATH /sbin:/vendor/bin:/system/sbin:/system/bin:/system/xbin
 export LD_LIBRARY_PATH /vendor/lib:/system/lib
 export ANDROID_BOOTLOGO 1
 export ANDROID_ROOT /system
 export ANDROID_ASSETS /system/app
 export ANDROID_DATA /data
 export ANDROID_STORAGE /storage
 export ASEC_MOUNTPOINT /mnt/asec
 export LOOP_MOUNTPOINT /mnt/obb
 export BOOTCLASSPATH /system/framework/core.jar:/system/framework/core-junit
.jar:/system/framework/bouncycastle.jar:/system/framework/ext.jar:/system/framew
ork/framework.jar:/system/framework/telephony-common.jar:/system/framework/mms-c
ommon.jar:/system/framework/android.policy.jar:/system/framework/services.jar:/s
ystem/framework/apache-xml.jar

Backward compatibility
 symlink /system/etc /etc
 symlink /sys/kernel/debug /d

Right now vendor lives on the same filesystem as system,
but someday that may change.
 symlink /system/vendor /vendor

Create cgroup mount point for cpu accounting
 mkdir /acct
 mount cgroup none /acct cpuacct
 mkdir /acct/uid

 mkdir /system
 mkdir /data 0771 system system
 mkdir /cache 0770 system cache
 mkdir /config 0500 root root

 # See storage config details at http://source.android.com/tech/storage/
 mkdir /mnt/shell 0700 shell shell
 mkdir /storage 0050 root sdcard_r

 # Directory for putting things only root should see.
 mkdir /mnt/secure 0700 root root
 # Create private mountpoint so we can MS_MOVE from staging
 mount tmpfs tmpfs /mnt/secure mode=0700,uid=0,gid=0

352 | Appendix D: Default init.rc Files

www.it-ebooks.info

http://www.it-ebooks.info/

 # Directory for staging bindmounts
 mkdir /mnt/secure/staging 0700 root root

 # Directory-target for where the secure container
 # imagefile directory will be bind-mounted
 mkdir /mnt/secure/asec 0700 root root

 # Secure container public mount points.
 mkdir /mnt/asec 0700 root system
 mount tmpfs tmpfs /mnt/asec mode=0755,gid=1000

 # Filesystem image public mount points.
 mkdir /mnt/obb 0700 root system
 mount tmpfs tmpfs /mnt/obb mode=0755,gid=1000

 write /proc/sys/kernel/panic_on_oops 1
 write /proc/sys/kernel/hung_task_timeout_secs 0
 write /proc/cpu/alignment 4
 write /proc/sys/kernel/sched_latency_ns 10000000
 write /proc/sys/kernel/sched_wakeup_granularity_ns 2000000
 write /proc/sys/kernel/sched_compat_yield 1
 write /proc/sys/kernel/sched_child_runs_first 0
 write /proc/sys/kernel/randomize_va_space 2
 write /proc/sys/kernel/kptr_restrict 2
 write /proc/sys/kernel/dmesg_restrict 1
 write /proc/sys/vm/mmap_min_addr 32768
 write /proc/sys/kernel/sched_rt_runtime_us 950000
 write /proc/sys/kernel/sched_rt_period_us 1000000

Create cgroup mount points for process groups
 mkdir /dev/cpuctl
 mount cgroup none /dev/cpuctl cpu
 chown system system /dev/cpuctl
 chown system system /dev/cpuctl/tasks
 chmod 0660 /dev/cpuctl/tasks
 write /dev/cpuctl/cpu.shares 1024
 write /dev/cpuctl/cpu.rt_runtime_us 950000
 write /dev/cpuctl/cpu.rt_period_us 1000000

 mkdir /dev/cpuctl/apps
 chown system system /dev/cpuctl/apps/tasks
 chmod 0666 /dev/cpuctl/apps/tasks
 write /dev/cpuctl/apps/cpu.shares 1024
 write /dev/cpuctl/apps/cpu.rt_runtime_us 800000
 write /dev/cpuctl/apps/cpu.rt_period_us 1000000

 mkdir /dev/cpuctl/apps/bg_non_interactive
 chown system system /dev/cpuctl/apps/bg_non_interactive/tasks
 chmod 0666 /dev/cpuctl/apps/bg_non_interactive/tasks
 # 5.0 %
 write /dev/cpuctl/apps/bg_non_interactive/cpu.shares 52

4.2/Jelly Bean’s Default init Files | 353

www.it-ebooks.info

http://www.it-ebooks.info/

 write /dev/cpuctl/apps/bg_non_interactive/cpu.rt_runtime_us 700000
 write /dev/cpuctl/apps/bg_non_interactive/cpu.rt_period_us 1000000

Allow everybody to read the xt_qtaguid resource tracking misc dev.
This is needed by any process that uses socket tagging.
 chmod 0644 /dev/xt_qtaguid

on fs
mount mtd partitions
 # Mount /system rw first to give the filesystem a chance to save a
 checkpoint
 mount yaffs2 mtd@system /system
 mount yaffs2 mtd@system /system ro remount
 mount yaffs2 mtd@userdata /data nosuid nodev
 mount yaffs2 mtd@cache /cache nosuid nodev

on post-fs
 # once everything is setup, no need to modify /
 mount rootfs rootfs / ro remount
 # mount shared so changes propagate into child namespaces
 mount rootfs rootfs / shared rec
 mount tmpfs tmpfs /mnt/secure private rec

 # We chown/chmod /cache again so because mount is run as root + defaults
 chown system cache /cache
 chmod 0770 /cache
 # We restorecon /cache in case the cache partition has been reset.
 restorecon /cache

 # This may have been created by the recovery system with odd permissions
 chown system cache /cache/recovery
 chmod 0770 /cache/recovery
 # This may have been created by the recovery system with the wrong context.
 restorecon /cache/recovery

 #change permissions on vmallocinfo so we can grab it from bugreports
 chown root log /proc/vmallocinfo
 chmod 0440 /proc/vmallocinfo

 chown root log /proc/slabinfo
 chmod 0440 /proc/slabinfo

 #change permissions on kmsg & sysrq-trigger so bugreports can grab kthread
 stacks
 chown root system /proc/kmsg
 chmod 0440 /proc/kmsg
 chown root system /proc/sysrq-trigger
 chmod 0220 /proc/sysrq-trigger
 chown system log /proc/last_kmsg
 chmod 0440 /proc/last_kmsg

 # create the lost+found directories, so as to enforce our permissions

354 | Appendix D: Default init.rc Files

www.it-ebooks.info

http://www.it-ebooks.info/

 mkdir /cache/lost+found 0770 root root

on post-fs-data
 # We chown/chmod /data again so because mount is run as root + defaults
 chown system system /data
 chmod 0771 /data
 # We restorecon /data in case the userdata partition has been reset.
 restorecon /data

 # Create dump dir and collect dumps.
 # Do this before we mount cache so eventually we can use cache for
 # storing dumps on platforms which do not have a dedicated dump partition.
 mkdir /data/dontpanic 0750 root log

 # Collect apanic data, free resources and re-arm trigger
 copy /proc/apanic_console /data/dontpanic/apanic_console
 chown root log /data/dontpanic/apanic_console
 chmod 0640 /data/dontpanic/apanic_console

 copy /proc/apanic_threads /data/dontpanic/apanic_threads
 chown root log /data/dontpanic/apanic_threads
 chmod 0640 /data/dontpanic/apanic_threads

 write /proc/apanic_console 1

 # create basic filesystem structure
 mkdir /data/misc 01771 system misc
 mkdir /data/misc/adb 02750 system shell
 mkdir /data/misc/bluedroid 0770 bluetooth net_bt_stack
 mkdir /data/misc/bluetooth 0770 system system
 mkdir /data/misc/keystore 0700 keystore keystore
 mkdir /data/misc/keychain 0771 system system
 mkdir /data/misc/sms 0770 system radio
 mkdir /data/misc/vpn 0770 system vpn
 mkdir /data/misc/systemkeys 0700 system system
 # give system access to wpa_supplicant.conf for backup and restore
 mkdir /data/misc/wifi 0770 wifi wifi
 chmod 0660 /data/misc/wifi/wpa_supplicant.conf
 mkdir /data/local 0751 root root

 # For security reasons, /data/local/tmp should always be empty.
 # Do not place files or directories in /data/local/tmp
 mkdir /data/local/tmp 0771 shell shell
 mkdir /data/data 0771 system system
 mkdir /data/app-private 0771 system system
 mkdir /data/app-asec 0700 root root
 mkdir /data/app-lib 0771 system system
 mkdir /data/app 0771 system system
 mkdir /data/property 0700 root root
 mkdir /data/ssh 0750 root shell
 mkdir /data/ssh/empty 0700 root root

4.2/Jelly Bean’s Default init Files | 355

www.it-ebooks.info

http://www.it-ebooks.info/

 # create dalvik-cache, so as to enforce our permissions
 mkdir /data/dalvik-cache 0771 system system

 # create resource-cache and double-check the perms
 mkdir /data/resource-cache 0771 system system
 chown system system /data/resource-cache
 chmod 0771 /data/resource-cache

 # create the lost+found directories, so as to enforce our permissions
 mkdir /data/lost+found 0770 root root

 # create directory for DRM plug-ins - give drm the read/write access to
 # the following directory.
 mkdir /data/drm 0770 drm drm

 # If there is no fs-post-data action in the init.<device>.rc file, you
 # must uncomment this line, otherwise encrypted filesystems
 # won't work.
 # Set indication (checked by vold) that we have finished this action
 #setprop vold.post_fs_data_done 1

on boot
basic network init
 ifup lo
 hostname localhost
 domainname localdomain

set RLIMIT_NICE to allow priorities from 19 to -20
 setrlimit 13 40 40

Memory management. Basic kernel parameters, and allow the high
level system server to be able to adjust the kernel OOM driver
parameters to match how it is managing things.
 write /proc/sys/vm/overcommit_memory 1
 write /proc/sys/vm/min_free_order_shift 4
 chown root system /sys/module/lowmemorykiller/parameters/adj
 chmod 0664 /sys/module/lowmemorykiller/parameters/adj
 chown root system /sys/module/lowmemorykiller/parameters/minfree
 chmod 0664 /sys/module/lowmemorykiller/parameters/minfree

 # Tweak background writeout
 write /proc/sys/vm/dirty_expire_centisecs 200
 write /proc/sys/vm/dirty_background_ratio 5

 # Permissions for System Server and daemons.
 chown radio system /sys/android_power/state
 chown radio system /sys/android_power/request_state
 chown radio system /sys/android_power/acquire_full_wake_lock
 chown radio system /sys/android_power/acquire_partial_wake_lock
 chown radio system /sys/android_power/release_wake_lock
 chown system system /sys/power/autosleep
 chown system system /sys/power/state

356 | Appendix D: Default init.rc Files

www.it-ebooks.info

http://www.it-ebooks.info/

 chown system system /sys/power/wakeup_count
 chown radio system /sys/power/wake_lock
 chown radio system /sys/power/wake_unlock
 chmod 0660 /sys/power/state
 chmod 0660 /sys/power/wake_lock
 chmod 0660 /sys/power/wake_unlock

 chown system system /sys/devices/system/cpu/cpufreq/interactive/timer_rate
 chmod 0660 /sys/devices/system/cpu/cpufreq/interactive/timer_rate
 chown system system /sys/devices/system/cpu/cpufreq/interactive/min_sample_
 time
 chmod 0660 /sys/devices/system/cpu/cpufreq/interactive/min_sample_time
 chown system system /sys/devices/system/cpu/cpufreq/interactive/hispeed_freq
 chmod 0660 /sys/devices/system/cpu/cpufreq/interactive/hispeed_freq
 chown system system /sys/devices/system/cpu/cpufreq/interactive/go_
 hispeed_load
 chmod 0660 /sys/devices/system/cpu/cpufreq/interactive/go_hispeed_load
 chown system system /sys/devices/system/cpu/cpufreq/interactive/above_
 hispeed_delay
 chmod 0660 /sys/devices/system/cpu/cpufreq/interactive/above_hispeed_delay
 chown system system /sys/devices/system/cpu/cpufreq/interactive/boost
 chmod 0660 /sys/devices/system/cpu/cpufreq/interactive/boost
 chown system system /sys/devices/system/cpu/cpufreq/interactive/boostpulse
 chown system system /sys/devices/system/cpu/cpufreq/interactive/input_boost
 chmod 0660 /sys/devices/system/cpu/cpufreq/interactive/input_boost

 # Assume SMP uses shared cpufreq policy for all CPUs
 chown system system /sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq
 chmod 0660 /sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq

 chown system system /sys/class/timed_output/vibrator/enable
 chown system system /sys/class/leds/keyboard-backlight/brightness
 chown system system /sys/class/leds/lcd-backlight/brightness
 chown system system /sys/class/leds/button-backlight/brightness
 chown system system /sys/class/leds/jogball-backlight/brightness
 chown system system /sys/class/leds/red/brightness
 chown system system /sys/class/leds/green/brightness
 chown system system /sys/class/leds/blue/brightness
 chown system system /sys/class/leds/red/device/grpfreq
 chown system system /sys/class/leds/red/device/grppwm
 chown system system /sys/class/leds/red/device/blink
 chown system system /sys/class/leds/red/brightness
 chown system system /sys/class/leds/green/brightness
 chown system system /sys/class/leds/blue/brightness
 chown system system /sys/class/leds/red/device/grpfreq
 chown system system /sys/class/leds/red/device/grppwm
 chown system system /sys/class/leds/red/device/blink
 chown system system /sys/class/timed_output/vibrator/enable
 chown system system /sys/module/sco/parameters/disable_esco
 chown system system /sys/kernel/ipv4/tcp_wmem_min
 chown system system /sys/kernel/ipv4/tcp_wmem_def
 chown system system /sys/kernel/ipv4/tcp_wmem_max

4.2/Jelly Bean’s Default init Files | 357

www.it-ebooks.info

http://www.it-ebooks.info/

 chown system system /sys/kernel/ipv4/tcp_rmem_min
 chown system system /sys/kernel/ipv4/tcp_rmem_def
 chown system system /sys/kernel/ipv4/tcp_rmem_max
 chown root radio /proc/cmdline

Define TCP buffer sizes for various networks
ReadMin, ReadInitial, ReadMax, WriteMin, WriteInitial, WriteMax,
 setprop net.tcp.buffersize.default 4096,87380,110208,4096,16384,110208
 setprop net.tcp.buffersize.wifi 524288,1048576,2097152,262144,524288,
 1048576
 setprop net.tcp.buffersize.lte 524288,1048576,2097152,262144,524288,
 1048576
 setprop net.tcp.buffersize.umts 4094,87380,110208,4096,16384,110208
 setprop net.tcp.buffersize.hspa 4094,87380,262144,4096,16384,262144
 setprop net.tcp.buffersize.hsupa 4094,87380,262144,4096,16384,262144
 setprop net.tcp.buffersize.hsdpa 4094,87380,262144,4096,16384,262144
 setprop net.tcp.buffersize.hspap 4094,87380,1220608,4096,16384,1220608
 setprop net.tcp.buffersize.edge 4093,26280,35040,4096,16384,35040
 setprop net.tcp.buffersize.gprs 4092,8760,11680,4096,8760,11680
 setprop net.tcp.buffersize.evdo 4094,87380,262144,4096,16384,262144

Set this property so surfaceflinger is not started by system_init
 setprop system_init.startsurfaceflinger 0

 class_start core
 class_start main

on nonencrypted
 class_start late_start

on charger
 class_start charger

on property:vold.decrypt=trigger_reset_main
 class_reset main

on property:vold.decrypt=trigger_load_persist_props
 load_persist_props

on property:vold.decrypt=trigger_post_fs_data
 trigger post-fs-data

on property:vold.decrypt=trigger_restart_min_framework
 class_start main

on property:vold.decrypt=trigger_restart_framework
 class_start main
 class_start late_start

on property:vold.decrypt=trigger_shutdown_framework
 class_reset late_start
 class_reset main

358 | Appendix D: Default init.rc Files

www.it-ebooks.info

http://www.it-ebooks.info/

Daemon processes to be run by init.
##
service ueventd /sbin/ueventd
 class core
 critical
 seclabel u:r:ueventd:s0

on property:selinux.reload_policy=1
 restart ueventd
 restart installd

service console /system/bin/sh
 class core
 console
 disabled
 user shell
 group log

on property:ro.debuggable=1
 start console

adbd is controlled via property triggers in init.<platform>.usb.rc
service adbd /sbin/adbd
 class core
 socket adbd stream 660 system system
 disabled
 seclabel u:r:adbd:s0

adbd on at boot in emulator
on property:ro.kernel.qemu=1
 start adbd

service servicemanager /system/bin/servicemanager
 class core
 user system
 group system
 critical
 onrestart restart zygote
 onrestart restart media
 onrestart restart surfaceflinger
 onrestart restart drm

service vold /system/bin/vold
 class core
 socket vold stream 0660 root mount
 ioprio be 2

service netd /system/bin/netd
 class main
 socket netd stream 0660 root system
 socket dnsproxyd stream 0660 root inet

4.2/Jelly Bean’s Default init Files | 359

www.it-ebooks.info

http://www.it-ebooks.info/

 socket mdns stream 0660 root system

service debuggerd /system/bin/debuggerd
 class main

service ril-daemon /system/bin/rild
 class main
 socket rild stream 660 root radio
 socket rild-debug stream 660 radio system
 user root
 group radio cache inet misc audio log

service surfaceflinger /system/bin/surfaceflinger
 class main
 user system
 group graphics drmrpc
 onrestart restart zygote

service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-sys
tem-server
 class main
 socket zygote stream 660 root system
 onrestart write /sys/android_power/request_state wake
 onrestart write /sys/power/state on
 onrestart restart media
 onrestart restart netd

service drm /system/bin/drmserver
 class main
 user drm
 group drm system inet drmrpc

service media /system/bin/mediaserver
 class main
 user media
 group audio camera inet net_bt net_bt_admin net_bw_acct drmrpc
 ioprio rt 4

service bootanim /system/bin/bootanimation
 class main
 user graphics
 group graphics
 disabled
 oneshot

service installd /system/bin/installd
 class main
 socket installd stream 600 system system

service flash_recovery /system/etc/install-recovery.sh
 class main
 oneshot

360 | Appendix D: Default init.rc Files

www.it-ebooks.info

http://www.it-ebooks.info/

service racoon /system/bin/racoon
 class main
 socket racoon stream 600 system system
 # IKE uses UDP port 500. Racoon will setuid to vpn after binding the port.
 group vpn net_admin inet
 disabled
 oneshot

service mtpd /system/bin/mtpd
 class main
 socket mtpd stream 600 system system
 user vpn
 group vpn net_admin inet net_raw
 disabled
 oneshot

service keystore /system/bin/keystore /data/misc/keystore
 class main
 user keystore
 group keystore drmrpc
 socket keystore stream 666

service dumpstate /system/bin/dumpstate -s
 class main
 socket dumpstate stream 0660 shell log
 disabled
 oneshot

service sshd /system/bin/start-ssh
 class main
 disabled

service mdnsd /system/bin/mdnsd
 class main
 user mdnsr
 group inet net_raw
 socket mdnsd stream 0660 mdnsr inet
 disabled
 oneshot

4.2/Jelly Bean uses the import mechanism to bring in other .rc files. In this case,
three files are imported. init.usb.rc and init.trace.rc are global to all device builds,
and I’ve included them below for reference. This init.rc, however, also imports a
board-specific init.${ro.hardware}.rc, which will be loaded according to the value
of the ro.hardware global property. Have a look at the board-specific .rc files in
the device/ directory for examples.
This is new to init.rc and is intricately related to the SEAndroid project. Have a
look at http://selinuxproject.org/page/SEAndroid for more information about
SEAndroid.

4.2/Jelly Bean’s Default init Files | 361

www.it-ebooks.info

http://selinuxproject.org/page/SEAndroid
http://www.it-ebooks.info/

In the 2.3/Gingerbread init.rc, class_start is used only to start the default class
of services, which in that version is all services in the default init.rc. In 4.2/Jelly
Bean, however, two classes are used in this file: core and main. Their names are
self-explanatory, and you can see later in the file that the services are marked as
either core or main. Generally speaking, the first class is listed first.
Here’s the first instance of a service definition where the class property is used
to indicate the service’s class, which in this case is core.
Unlike in 2.3/Gingerbread, the starting and stopping of adbd isn’t controlled by
the persist.service.adb.enable property. Instead, as the comment suggests,
it’s controlled in the init.usb.rc files. We’ll discuss this in more detail below.
netd is the first service in the list that’s part of the main class.
As I mentioned in Chapter 2, the Surface Flinger is no longer part of the System
Server. Instead, it’s started as a separate process, as we can see here.

init.usb.rc
This .rc file is related to all things USB. Specifically, to better understand its operation
and the values being set, you need to take a look at the USB system service code in
frameworks/base/services/java/com/android/server/usb/.

Copyright (C) 2012 The Android Open Source Project
#
USB configuration common for all android devices
#

on post-fs-data
 chown system system /sys/class/android_usb/android0/f_mass_storage/lun/file
 chmod 0660 /sys/class/android_usb/android0/f_mass_storage/lun/file
 chown system system /sys/class/android_usb/android0/f_rndis/ethaddr
 chmod 0660 /sys/class/android_usb/android0/f_rndis/ethaddr

Used to disable USB when switching states
on property:sys.usb.config=none
 stop adbd
 write /sys/class/android_usb/android0/enable 0
 write /sys/class/android_usb/android0/bDeviceClass 0
 setprop sys.usb.state ${sys.usb.config}

adb only USB configuration
This should only be used during device bringup
and as a fallback if the USB manager fails to set a standard configuration
on property:sys.usb.config=adb
 write /sys/class/android_usb/android0/enable 0
 write /sys/class/android_usb/android0/idVendor 18d1
 write /sys/class/android_usb/android0/idProduct D002
 write /sys/class/android_usb/android0/functions ${sys.usb.config}
 write /sys/class/android_usb/android0/enable 1

362 | Appendix D: Default init.rc Files

www.it-ebooks.info

http://www.it-ebooks.info/

 start adbd
 setprop sys.usb.state ${sys.usb.config}

USB accessory configuration
on property:sys.usb.config=accessory
 write /sys/class/android_usb/android0/enable 0
 write /sys/class/android_usb/android0/idVendor 18d1
 write /sys/class/android_usb/android0/idProduct 2d00
 write /sys/class/android_usb/android0/functions ${sys.usb.config}
 write /sys/class/android_usb/android0/enable 1
 setprop sys.usb.state ${sys.usb.config}

USB accessory configuration, with adb
on property:sys.usb.config=accessory,adb
 write /sys/class/android_usb/android0/enable 0
 write /sys/class/android_usb/android0/idVendor 18d1
 write /sys/class/android_usb/android0/idProduct 2d01
 write /sys/class/android_usb/android0/functions ${sys.usb.config}
 write /sys/class/android_usb/android0/enable 1
 start adbd
 setprop sys.usb.state ${sys.usb.config}

audio accessory configuration
on property:sys.usb.config=audio_source
 write /sys/class/android_usb/android0/enable 0
 write /sys/class/android_usb/android0/idVendor 18d1
 write /sys/class/android_usb/android0/idProduct 2d02
 write /sys/class/android_usb/android0/functions ${sys.usb.config}
 write /sys/class/android_usb/android0/enable 1
 setprop sys.usb.state ${sys.usb.config}

audio accessory configuration, with adb
on property:sys.usb.config=audio_source,adb
 write /sys/class/android_usb/android0/enable 0
 write /sys/class/android_usb/android0/idVendor 18d1
 write /sys/class/android_usb/android0/idProduct 2d03
 write /sys/class/android_usb/android0/functions ${sys.usb.config}
 write /sys/class/android_usb/android0/enable 1
 start adbd
 setprop sys.usb.state ${sys.usb.config}

USB and audio accessory configuration
on property:sys.usb.config=accessory,audio_source
 write /sys/class/android_usb/android0/enable 0
 write /sys/class/android_usb/android0/idVendor 18d1
 write /sys/class/android_usb/android0/idProduct 2d04
 write /sys/class/android_usb/android0/functions ${sys.usb.config}
 write /sys/class/android_usb/android0/enable 1
 setprop sys.usb.state ${sys.usb.config}

USB and audio accessory configuration, with adb
on property:sys.usb.config=accessory,audio_source,adb

4.2/Jelly Bean’s Default init Files | 363

www.it-ebooks.info

http://www.it-ebooks.info/

 write /sys/class/android_usb/android0/enable 0
 write /sys/class/android_usb/android0/idVendor 18d1
 write /sys/class/android_usb/android0/idProduct 2d05
 write /sys/class/android_usb/android0/functions ${sys.usb.config}
 write /sys/class/android_usb/android0/enable 1
 start adbd
 setprop sys.usb.state ${sys.usb.config}

Used to set USB configuration at boot and to switch the configuration
when changing the default configuration
on property:persist.sys.usb.config=*
 setprop sys.usb.config ${persist.sys.usb.config}

The sys.usb.config global property is what controls the state of the USB
connection. It’s either explicitly set by the code in frameworks/base/services/
java/com/android/server/usb/UsbDeviceManager.java or updated based on changes
to persist.sys.usb.config as is done farther down in the file.
Here’s adbd being stopped based on a change to sys.usb.config.
This is one of several instances where adbd is started based on a change to
sys.usb.config.
Whenever persist.sys.usb.config is modified, sys.usb.config is
automatically updated here. That, in turn, is likely to trigger other parts of this
file based on the above-declared triggers.

init.trace.rc
Since 4.1/Jelly Bean, Android has included a systrace command for use by app devel‐
opers. The systrace tool on the host side actually depends on an atrace tool on the target,
which is invoked via ADB. For its part, atrace uses the kernel’s ftrace functionality to
trace the system. This init.trace.rc sets up ftrace for use by Android’s tracing tools. A
quick search for “ftrace” in your favorite search engine should allow you to easily find
more documentation on this mechanism.

Permissions to allow system-wide tracing to the kernel trace buffer.
##
on boot

Allow writing to the kernel trace log.
 chmod 0222 /sys/kernel/debug/tracing/trace_marker

Allow the shell group to enable (some) kernel tracing.
 chown root shell /sys/kernel/debug/tracing/trace_clock
 chown root shell /sys/kernel/debug/tracing/buffer_size_kb
 chown root shell /sys/kernel/debug/tracing/options/overwrite
 chown root shell /sys/kernel/debug/tracing/events/sched/sched_switch/enable
 chown root shell /sys/kernel/debug/tracing/events/sched/sched_wakeup/enable
 chown root shell /sys/kernel/debug/tracing/events/power/cpu_frequency/enable
 chown root shell /sys/kernel/debug/tracing/events/power/cpu_idle/enable

364 | Appendix D: Default init.rc Files

www.it-ebooks.info

http://www.it-ebooks.info/

 chown root shell /sys/kernel/debug/tracing/events/power/clock_set_rate/enable
 chown root shell /sys/kernel/debug/tracing/events/cpufreq_interactive/enable
 chown root shell /sys/kernel/debug/tracing/tracing_on

 chmod 0664 /sys/kernel/debug/tracing/trace_clock
 chmod 0664 /sys/kernel/debug/tracing/buffer_size_kb
 chmod 0664 /sys/kernel/debug/tracing/options/overwrite
 chmod 0664 /sys/kernel/debug/tracing/events/sched/sched_switch/enable
 chmod 0664 /sys/kernel/debug/tracing/events/sched/sched_wakeup/enable
 chmod 0664 /sys/kernel/debug/tracing/events/power/cpu_frequency/enable
 chmod 0664 /sys/kernel/debug/tracing/events/power/cpu_idle/enable
 chmod 0664 /sys/kernel/debug/tracing/events/power/clock_set_rate/enable
 chmod 0664 /sys/kernel/debug/tracing/events/cpufreq_interactive/enable
 chmod 0664 /sys/kernel/debug/tracing/tracing_on

Allow only the shell group to read and truncate the kernel trace.
 chown root shell /sys/kernel/debug/tracing/trace
 chmod 0660 /sys/kernel/debug/tracing/trace

4.2/Jelly Bean’s Default init Files | 365

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX E

Resources

There is more to Android than could ever be covered in a single book. For starters,
Android has a living ecosystem around it and a lot of community projects. This appendix
highlights the major resources you should explore as your work with Android
progresses.

Websites and Communities
A vast number of websites and communities are either directly or indirectly related to
Android. I’ve tried to categorize them below as neatly as possible.

Google
Android Open Source Project

Google’s main site for the Android platform. It historically contained more infor‐
mation about the system, but it has been removed. It still is a very good reference
on how to get the sources and how to set up your development system to build the
AOSP. It also contains the latest documentation on the Android Compatibility Pro‐
gram, including the Compliance Definition Document.

Android Developer
This is Google’s site for app developers. Unlike the platform site, this site is quite
rich in documentation. It contains tutorials, an API reference, guidelines for graphic
designers, and more. In sum, if you’re developing an app, you’re in good hands with
this site.

Android Tools Project Site
This is the site that contains the information about Android’s developer tools. This
includes the SDK, the Eclipse plug-in, the NDK, etc.

367

www.it-ebooks.info

http://source.android.com/
https://developer.android.com/develop/index.html
http://tools.android.com/
http://www.it-ebooks.info/

SoC Vendors
TI Android Development Kit for Sitara

This dev kit includes a set of AOSP sources that have been customized to run on
boards based on TI’s chips such as the BeagleBone. You may also find the porting
information available here.

Linaro Android
Per its website, “Linaro is a not-for-profit engineering organization consolidating
and optimizing open source Linux software and tools for the ARM architecture.”
Effectively, it’s an organization serving several SoC vendors, helping them with
platform enablement. They maintain an Android tree for their members that is
freely available to download.

CodeAurora
This is part of Linux Foundation Labs and provides enablement for various open
source projects for Qualcomm chips. As such, it maintains an Android tree.

Forks
Apart from the information provided on their sites, many of these forks have public
mailing lists that you may find useful.
CyanogenMod

This is probably the most popular Android fork. It’s essentially an aftermarket AOSP
distribution aimed at techies and power users, with additional features and en‐
hancements. Most interestingly, all the development is done in the open.

Android-x86
This is a separate project from the work done by Intel to get x86 support merged
into the main AOSP tree. Instead, this is geared to porting Android to PCs, net‐
books, and laptops.

RowBoat
This is the community project maintained by TI from which the TI Android De‐
velopment Kit is derived.

Replicant
This project aims to replace as many Android components with free software as
possible. For instance, it includes F-Droid, a free software application catalog (es‐
sentially a free software version of Google Play).

Apart from the above list, there’s also a large and growing number of closed-source forks
of the AOSP. Remember that Android’s licensing is very permissive.

368 | Appendix E: Resources

www.it-ebooks.info

http://www.ti.com/tool/androidsdk-sitara
http://processors.wiki.ti.com/index.php/Android
https://wiki.linaro.org/Platform/Android
https://www.codeaurora.org/
http://www.cyanogenmod.org/
http://www.android-x86.org/
https://code.google.com/p/rowboat/
http://replicant.us/
http://f-droid.org/
http://www.it-ebooks.info/

Documentation and Forums
Linux Weekly News

The primary news site for all things relating to the kernel’s development. Android
is covered when relevant, but the focus is certainly on classic Linux distributions
and the Linux kernel.

Embedded Linux Wiki
A wiki site that has a large collection of information related to embedded Linux.
For some time now, it’s also had an Android section.

OMAPpedia
This wiki contains information about the use of Linux and Android on TI’s OMAP
processors. Some of the articles include a lot of detailed instructions.

xdadevelopers
While this site is traditionally frequented by modders, it sometimes contains in‐
formation that is very difficult to obtain otherwise. Have a look at the Android
section. Most of the valuable information found here is in the site’s forums.

Slideshare
This is a general-purpose site for sharing slides. It contains a large number of
Android-related slides, including many about its internals or various internal
components.

Vogella
This site is maintained by Lars Vogel and provides various tutorials about Android
app development. It’s a very good complement to the official Android app devel‐
opment information distributed by Google.

Embedded Linux Build Tools
BuildRoot

This project has been around for over a decade now, and allows you to build a target
embedded Linux root filesystem and tools based on a configuration fed to it using
a menu-based system.

Yocto Project
Similar to BuildRoot but much more ambitious in its goals. It contains a framework
and tools for generating entire embedded Linux distributions.

Websites and Communities | 369

www.it-ebooks.info

http://lwn.net/
http://www.elinux.org/
http://www.elinux.org/Android_Portal
http://omappedia.org/wiki/Main_Page
https://www.xda-developers.com/
https://www.xda-developers.com/tag/all-android/
https://www.xda-developers.com/tag/all-android/
http://www.slideshare.net/
http://www.vogella.com/android.html
http://buildroot.uclibc.org/
https://www.yoctoproject.org/
http://www.it-ebooks.info/

Open Hardware Projects
BeagleBoard and BeagleBone

There are many inexpensive evaluation boards on the market. However, the Bea‐
gleBoard and BeagleBone have accrued a very active community. Schematics
provided.

Books
Building Embedded Linux Systems, 2nd ed., by Karim Yaghmour, Jon Masters, Gilad
Ben-Yossef, and Philippe Gerum (O’Reilly, 2008)

The classic book on the topic of embedded Linux, originally written by yours truly
and since updated under Jon Masters’ lead.

Embedded Linux Primer, 2nd ed., by Christopher Hallinan (Prentice Hall, 2010)
Another good embedded Linux book.

Linux Device Drivers, 3rd ed., by Jonathan Corbet, Alessandro Rubini, and Greg
Kroah-Hartman (O’Reilly, 2005)

Despite its age, this remains the reference for Linux device driver authors.

Linux Kernel Development, 3rd ed., by Robert Love (Addison-Wesley, 2010)
One of the kernel internals books that has withstood the test of time.

Linux Kernel Architecture, by Wolfgang Mauerer (Wrox, 2008)
Another internals title.

Programming Android, 2nd ed., by Zigurd Mednieks, Laird Dornin, Blake Meike, and
Masumi Nakamura (O’Reilly, 2012)

An in-depth book on app development.

Learning Android, by Marko Gargenta (O’Reilly, 2011)
An introductory book on app development.

Professional Android 4 Application Development, by Reto Meier (Wrox, 2012)
An app development book by the tech lead for the Android Developer Relations
team at Google.

Conferences and Events
Android Builders Summit

The primary event for developers doing work inside the AOSP stack.

Embedded Linux Conference
The main event for all things related to embedded Linux.

370 | Appendix E: Resources

www.it-ebooks.info

http://beagleboard.org
https://events.linuxfoundation.org/events/android-builders-summit
https://events.linuxfoundation.org/events/embedded-linux-conference
http://www.it-ebooks.info/

Embedded Linux Conference Europe
The European run of the ELC.

Linaro Connect
The event Linaro uses to bring together its members and developers.

AnDevCon
The main app developer conference. Also has some platform talks.

Conferences and Events | 371

www.it-ebooks.info

https://events.linuxfoundation.org/events/embedded-linux-conference-europe
http://www.linaro.org/connect
http://www.andevcon.com/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
2.3/Gingerbread (see Gingerbread, Android

2.3/)
3G, support for, 3
4.0/Ice-Cream Sandwich (see Ice-Cream Sand‐

wich, Android 4.0/)
4.2/Jelly Bean (see see JellyBean, Android 4.2/)

A
accelerometer, support for, 4
access enforcement, using URIs, 31
ACP (Android Compatibility Program), 14, 17–

21
acquire() method, 68
activities, as Android component, 26
Activity Manager, 70, 223, 264, 279
adb (Android debug bridge)

command-line tool, 45
connecting to USB target using commands,

169
device connection and status, 195–196
filesystem commands, 202–204
local commands, 194–195
main flags, parameters, and environment

variables, 193–194
setting up, 171
state-altering commands, 204
theory of operation, 191–193

tunneling PPP, 207
using in AOSP, 101–105

address bus, 165, 167
add_lunch_combo() function, 120
ADT (Android Development Tools) plugin, 31
Affero-licensed FDroid Repository, 15
.aidl files, IDL stored in, 30
aidl tool, 30, 39
alarm driver, 41–42
AlarmManager class, 41
ALSA drivers, 47
am command, 279–282
“Anatomy of contemporary GSM cellphone

hardware” (Welte), 158
Android

about developers, xi–xii
architecture vs. Linux, 33
characteristics, 4–5
daemons, 59–60
development model, 5–7
development setup and tools, 22
ecosystem, 8
features, 2–4
finding drivers, 38
getting to work on embedded system, 9
hacking and customizing, 10
hardware

compliance requirements and, 17–21
support for, 323–335

373

www.it-ebooks.info

http://www.it-ebooks.info/

support of, 47–49
history of, 1–2
legal framework, 10–17
libraries, 54–57
resources for information about, 367–371

Android 3.x/Honeycomb, 7, 10
Android Compatibility Program (ACP), 14, 17–

21
Android debug bridge (adb)

command-line tool, 45
connecting to USB target using commands,

169
device connection and status, 195–196
filesystem commands, 202–204
local commands, 194–195
main flags, parameters, and environment

variables, 193–194
remote commands, 197–202
state-altering commands, 204–207
theory of operation, 191–193
tunneling PPP, 207
using in AOSP, 101–105

Android Developers Guide (Google), 105, 109
Android Developers website, xiii
Android Development Tool (ADT) plug-in, 19,

31
Android Inc., 1
Android Market (see Google Play)
Android Open Source Project (AOSP) (see

AOSP (Android Open Source Project))
Android Platform

AOSP and, 10
requirement, 9

Android Runtime, 251–253
“Android Simulator Environment” (website

post), 117
Android Software Development Kit (SDK)

accessing, 31
building for Mac OS, 135–136
building for Windows, 136

Android.mk files, 112, 128–131
android:persistent, 264
Androidisms, merging into mainline, 35–37
Androidized kernels, 34–35
ANDROID_LOG_TAGS variable, 199, 221
anonymous shared memory (ashmem), 40
ANR (Application Not Responding) dialog box,

70

AOSP (Android Open Source Project)
Android Platform and, 10
basic hacks, 143–152
build environment for, 22
build system setup, 91–94
building Android, 94–99
building without framework, 250
coexisting with legacy Linux user-space,

307–322
communication between glibc-based stack

and, 310
development host setup, 79
device support, 51–52
generated libraries, 54–56
getting, 80–86
GPL requirements in, 11
hardware requirements for running, 17
inside, 86–90
legacy Linux user-space merging with, 309
logging within, 43
mastering emulator, 105–109
modifying, 5
packages, 71–73
running Android, 99–101
submitting fixes to code, 6
trimming size of, 338–339
using adb, 101–105

AP (Application Processor), in system architec‐
ture, 157

Apache Harmony project, IBM and, 16
Apache License 2.0 (ASL) licensing, 11, 14
API

in application framework, 4
updating, 138–139

Apkudo, testing apps on devices at, 31
app developers, view of Android, 26–32
app development tools, 31–32
app overlay, adding, 149–150
app, adding, 148–149
Apple, mobile patent issues, 17
application components, 26–27
application framework, Android

APIs in, 4
SUB1, 2

Application Not Responding (ANR) dialog box,
70

Application Processor (AP), in system architec‐
ture, 157

apps startup, 263–265

374 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

APPWIDGET_UPDATE intent, 265
architecture

Binder as cornerstone of, 39
build system

about, 113–115
cleaning, 127
configuration of, 115–118
envsetup.sh, 118–124
function definitions, 124–125
main make recipes, 125–127
module build templates, 127–132
output, 132–134

overview of, 33–34, 87
system, 155–160

ARCH_ARM_HAVE_* variables, 118
ashmem (anonymous shared memory), 40
asInterface(), 331
ASL (Apache License 2.0) licensing, 11–14
Audio Flinger, reliance on ashmem, 40
autosleep mechanisms, 36, 37

B
backing up data, 290–292
Backup Manager service, 292
Baseband Processor (BP), in system architec‐

ture, 157–158
battery-powered device, managing, 159
BeagleBoard, 103, 160
Bhoj, Vishal, 35
Binder

about, 39–40
against glibc based stacks, 310
as RPC/IPC mechanism, 39
calling system services through, 330–331
developers using aidl tool to, 39
interaction and Service Manager, 68–70
OpenBinder Documentation, 39
using through dev/binder, 30

Binder driver, merging into staging tree, 40
Bionic

building legacy code against, 309, 310
BusyBox linking against, 321
dynamic linker, 225

Bird, Tim, 105
Bitbar’s Testdroid products, testing apps on de‐

vices at, 31
Bluetooth, support for, 3
bmgr, 290–292
BoardConfig.mk file, 118

boot animation, 245, 257–260
boot logo, 245–247
bootanimation.zip, 259
BOOTCLASS PATH variable, 252
BOOT_COMPLETED intent, 265
Bornstein, Dan, 62
BP (Baseband Processor), in system architec‐

ture, 157–158
branding elements, 13
Brin, Sergey, 1
Brisset, Fabien, 161
broadcast receivers, as Android component, 27
Brown, Martin “Improve collaborative build

times with ccache”, 124
browsers

connecting to port 80 on Android device us‐
ing, 314–317

WebKit-based, 3
BSD license, 11, 13
bug report, adb, 199–200
build commands, seeing, 134–135
build environment, Google supported, 22
build recipes, 134–143
build system

about, 111
AOSP hacks in, 143–152
architecture

about, 113–115
cleaning, 127
configuration of, 115–118
envsetup.sh, 118–124
function definitions, 124–125
main make recipes, 125–127
module build templates, 127–132
output, 132–134

build recipes, 134–143
comparison with other build systems, 112–

113
configuring, 94–99
creating and customizing default list of

packages, 337–339
design background of, 113
filesystem and, 185–190
reuse large legacy software packages in, 308
setup, 91–94

Building Embedded Linux Systems (Yaghmour),
xii, 96, 140, 309

Buildroot, 308, 322
BUILD_* macros, 132

Index | 375

www.it-ebooks.info

http://www.it-ebooks.info/

BUILD_ENV_SEQUENCE_NUMBER variable,
116

BusyBox
connecting to port 80 on Android device,

314–317
linking against Bionic, 321
providing init, 57
shell session with Android’s shell and Tool‐

box’s commands in, 313–314
using instead of Android shell, 312–313
vs. Toolbox, 58, 319–321

C
C/C++

interacting with HAL modules, 49
vs. Java, 61

camera
component in SoC, 164
support for, 4

Canonical, 92
ccache (Compiler Cache), 123
CDD (Compliance Definition Document), 17–

21, 159
check_prereq, 225
clean, 127
CLEAR_VARS, 130
Code Licenses, 11–13
command line

adb tool, 45
Android, 208–228
utilities, 60

commands and utilities
command line, 219–228
framework

bmgr, 290–292
Dalvik Utilities, 293–297
dumpstate, 270–276
dumpsys, 268–270
ime command, 286–287
input command, 287–288
monkey, 288–290
pm command, 282–285
rawbu, 276–277
service, 266–268
stagefright command, 292
svc command, 285–286

compass, support for, 4
Compliance Definition Document (CDD), 17–

21, 159

Compliance Test Suite (CTS), 17–18, 21, 127
component lifecycles, 28
components, 26–27
concepts, Android, 26–30
connectivity, in system architecture, 160
console_init_action(), 245
content providers, as Android component, 27
Copy-on-Write (COW), 75
core components, in system architecture, 158–

159
COW (Copy-on-Write), 75
CPUs

address bus in, 165, 167
handling SoCs, 161–164

crespo, 118
croot command, 119
CTS (Compliance Test Suite), 17–18, 21, 127,

136–137
CyanogenMod project, 8

D
D-Bus method, 50
daemons, 59–60, 150, 219–228, 297–304
Dalvik Debug Monitor Server (ddms) libraries,

193, 199
Dalvik Virtual Machine

about, 3
Android’s Java and, 60
global properties, 252
in framework, 251–253
JIT code cache, 40, 100
starting up, 295
utilities, 293–297
vs. JVM, 62

dalvikvm command, 293–294
Danger Inc., development of Sidekick phone, 1
/data directory, 53, 134, 182–185
data storage options, 30
data, backing up, 290–292
ddms (Dalvik Debug Monitor Server) libraries,

193, 199
debuggerd, 223
debugging components

host-target debug setup, 169
in SoC, 164
in system architecture, 160–161

debugging, Dalvik, 202
default droid build, 134
default properties, vet, 148

376 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

/dev nodes method, 50
dev struct, initializing, 330
dev/binder, 30, 40
development application tools, 31
development components, in system architec‐

ture, 160–161
development environment, Android, 4
development setup

hardware components in, 169–170
development setup and tools, 22, 79
device support details, 51–52
device, adding custom, 143–148
DEVICE_PACKAGE_OVERLAYS variable, 144,

149
Dex Optimization, 260–262
dexdump command, 295–297
display, in SoC, 164
dlopen() method

hardcoded, 50–52
loading through HAL, 49, 51–52, 324, 327
rild using, 302

DMA, in SoC, 164
driver operation, ioctl() as, 217
drivers, finding Android, 38
droid, 134
DSP, in SoC, 164
dump() function, 70
dump() method, 268
dumpstate, 270–276
dumpsys, 268–270
dvz command, 294

E
Eclipse, 31, 68, 148
EDGE, support for, 3
embedded Multi- MediaCard (eMMC) chips,

158, 177
embedding Android, about, xi–xii
eMMC (embedded Multi- MediaCard) chips,

158, 177
emulator, 96

(see also QEMU-based emulator)
adb

controlling, 206–207
interacting with, 193

mastering, 105–109
starting, 99
vs. QEMU-based emulator, 107
vs. simulator, 117

enhancements, submitting, 6
envsetup.sh, 118–124
EPOLLWAKEUP, 36
Ethernet connections, 160–161, 169
evaluation boards, 171–173
EventLog class, 45
expand(), 268
expansion components, in system architecture,

160–161
expansion headers, 160
explicit intents, 27–28
external directory, 87

F
Federal Communications Commission (FCC),

certification of SDR devices, 157
filesystem

adb commands, 202–204
build system and, 185–190
native user space, 175–185

Filesystem Hierarchy Standard (FHS), 53, 307
filesystem layout, 53–54
FIRST_CALL_TRANSACTION variable, 268
forward, connection types of adb, 200–202
framework

about, 30–31, 249
apps startup, 263–265
boot animation, 257–260
building AOSP without, 250
building blocks of, 251–253
daemons, 297–304
Dex Optimization, 260–262
Hardware Abstraction Layer, 304–305
system services in, 254–257
utilities and commands, 266–297

am command, 279–282
bmgr, 290–292
Dalvik Utilities, 293–297
dumpstate, 270–276
dumpsys, 268–270
ime command, 286–287
input command, 287–288
monkey, 288–290
pm command, 282–285
rawbu, 276–277
service, 266–268
stagefright command, 292
svc command, 285–286

full-eng combo, 94, 144

Index | 377

www.it-ebooks.info

http://www.it-ebooks.info/

function definitions, build system architecture,
124–125

FUSE (Filesystem in User SpacE), 158

G
game developers, NDK for, 32
generic-eng combo, 94, 122
GetByteArrayElements(), 326
getprop command, 58
getProperty(), 252
getService(), 331
getSystemService(), 70, 331, 333, 334
GID (Group Identifier), 30
Gingerbread, Android 2.3/

Android code in, 87–91
availability, 5
build environment for, 22
default init.rc files, 341–351
function definitions in, 124
generic-eng combo in, 94
shell session with Android’s shell and Tool‐

box’s commands in, 313
simulator, 117
Status bar in, 25
stock apps in, 71, 73
time to build, 98
Toolbox commands in, 316
variables set by lunch in, 122

git rebase command, Androidized kernel using,
35

git web interface, 80
GitHub website, 161
glibc library

about, 308
BusyBox linking against, 321
installing, 317

glibc-based stacks, communication between
AOSP and, 310

global properties, 57, 213, 238–243
GNU autotools kernel style, 112
GNU GPLv2 license, 11
GNU make, 113
godir command, 119
Goldfish, 101
Google

Android Developers Guide, 105, 109
apps owned by, 15
aquiring Android Inc., 1
architecture overview from, 34

build forms, 98
developing in, xi–xii, 5
Initializing a Build Environment, 79, 91
online documentation to set up application

development environment, 22
right to decline participation in Android

ecosystem, 18
vs. Oracle, 15–16

Google Play
apps available through, 4, 7
marketing apps outside of, 15

Gosling, James, 15–16, 60
GPL-licensed components, 11, 13
GPS, support for, 4
Graphics Processing Units (GPUs), 162, 164
Groklaw website, 16
Group Identifier (GID), 30
grouper, 118
GSM telelphony, support for, 3
GStreamer, 4

H
Hackborn, Dianne, 39
hacks, basic AOSP, 143–152
HAL (Hardware Abstraction Layer)

audio support for, 47
C/C++ interacting with, 47
definitions with hardware, 324
device manufacturers providing, 3
dlopen() method-loading through, 49, 51–

52, 324, 327
extension, 327–328
framework, 304–305
vs. loadable kernel modules, 49

HAL modules
to support hardware types, 328–330

hardware
compliance requirements and, 17–21
support, 46–52, 323–335

Hardware Abstraction Layer (HAL) (see HAL
(Hardware Abstraction Layer))

hardware components
development setup, 169
evaluation boards, 171–173
for memory layout and mapping, 165–169
inside SoC, 161–165
system architecture, 155–160

High-Resolution Timers (HRT), alarm driver
and, 41

378 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

Hjønnevåg, Arve, 39
hmm command, 119
home screen, 245, 264–265
Honeycomb, Android 3.x/, 7, 10
host-target debug setup, 169
HRT (High-Resolution Timers), alarm driver

and, 41
httpd daemon, 314
hw_get_module(), 49, 327

I
“I, Robot: The Man Behind the Google Phone”

(Markoff), 1
IBM, Apache Harmony project and, 16
Ice-Cream Sandwich, Android 4.0/

library prelinking in, 151
support for Ethernet, 161

IDL (Interface Definition Language), 30
ime command, 286–287
IMemory interface, 40
IMEs (Input Method Editors), 71
implicit intents, 27
“Improve collaborative build times with ccache”

(Brown), 124
in-tree, building recursively, 142–143
include directive, 128
inherit-product function, 144
inherit-product makefile function, 338
init, 341

(see also .rc files, init)
about, 228
boot logo, 245–247
configuration files, 230–238
configuration of, 57
global properties, 238–243
normal vs. Android, 230–238
shell scripts and, 238
theory of operation, 228–230
ueventd, 243–245

init boot logo, 245
/init directory, 134
Initializing a Build Environment (Google), 79,

91
init_native(), 325, 326
input command, 287–288
input events, 215
input method, 264
Input Method Editors (IMEs), 71
installd, 298–299

intents
about, 27–28, 280
APPWIDGET_UPDATE, 265
BOOT_COMPLETED, 265
globally defined, 26

Inter-Process Communication (IPC) mecha‐
nism, communicating with Binder, 30

Interface Definition Language (IDL), 30
interfacing methods, 49–50
intermediates, 132
Internals, Android

alarm driver, 41–42
anonymous shared memory, 40
AOSP packages, 71
app developers view of, 26–32
architecture overview, 33–34
Binder interaction and Service Manager, 68–

70
Binder mechanism, 39–40
Dalvik Virtual Machine vs. JVM, 62
hardware support, 46–52, 323–335
Linux kernel, 34–35
logging, 42–45
low-memory killer, 37–38
native-user space environment, 52–60
paranoid networking, 45
physical memory driver, 45
RAM console, 45
system services, 63–70
system startup, 73–77
WakeLock mechanism, 35–37

ioctl(), 40, 41, 47, 216–217
ioprio option, 256
IPC (Inter-Process Communication) mecha‐

nism
RPC/, 30
shared memory as, 40

IStatusBarService interface, 267
ITIMER_REAL, 41

J
Java

Dalvik Virtual Machine and Android’s, 60–
62

rights to, 15–16
terminology, 61
vs. C/C++, 61

Java ARchives (JAR), 62
Java Debug Wire Protocol (JDWP), 202

Index | 379

www.it-ebooks.info

http://www.it-ebooks.info/

Java Development Kit (JDK), 61, 92–94
Java Native Interface (JNI), 63, 326, 330
Java Native Interface (Liang), 326
Java System Properties, 252
Java Virtual Machine (JVM)

building Android on, 98
Java Virtual Machine (JVM) vs. Dalvic, 62
JDK (Java Development Kit), 61, 92–94
JellyBean, Android 4.1/

build environment for, 22
libraries, 57

JellyBean, Android 4.2/
Android code in, 91
build environment for, 22
BusyBox commands in, 316–317
configuring build system results, 94–96
default init.rc files, 351–364
full-eng combo in, 94
function definitions in, 124
getSystemService() in, 333
hmm command, 119
prebuilts in, 87
support for Ethernet, 161
time to build, 98

JIT code cache, Dalvik Virtual Machine, 40, 100
JNI (Java Native Interface), 63, 326, 330
JTAG, 160
JVM (Java Virtual Machine)

building Android on, 98

K
kernel, 29

(see also Linux kernel)
Androidized, 34–35
boot process of, 57
code license for, 11
features of, 9
images, 127
loadable modules, vs. HAL modules, 49
styles, 112

kernel boot screen, 245
kernel.org, 34, 38
keystore, 304
Kroah-Hartman, Greg, The Linux Staging Tree

(blog post), 38

L
LCD displays, display bridge for, 159

Learning Android (O’Reilly), xi–xii, 22, 32
legacy Linux user-space

communication between glibc-based stack
and AOSP, 310

merging with AOSP, 309
legal framework, Android, 10–17
LessPainful, testing apps on devices at, 31
LGPL licensed components, 11
Liang, Sheng, Java Native Interface, 326
liblog functions, 43
libraries, 54–57, 167
library

adding native, 151–152
ddms, 193, 199
prelinking, 151
RIL, 303

Linaro
about, 8
Androidized kernel, 35
patches for adding Ethernet functionality,

161
linker, 225
Linker method, loaded .so files, 50, 51–52
Linux

architecture vs. Android, 33
building SDK for, 135–136
commands from Toolbox, 212–213
hardware support of, 46
logging systems vs. Android, 42
MTD layer, 178
staging tree, 38

Linux kernel
Androidization of, 34–35
code license for, 11
handling multicore SoC, 164
hardware running Android and, 17
Out-of-Memory killing mechanisms, 29
requirement, 9

Linux Kernel Development, 3rd ed. (Love), 35
LInux Kernel Mailing List (LKML), Userspace

low memory killer daemon posted at, 38
The Linux Staging Tree (blog post), 38
Linux user-space, legacy

coexisting with AOSP, 307–322
Linux user-space, legacy, coexisting with AOSP,

307–322
LKML (LInux Kernel Mailing List), Userspace

low memory killer daemon posted at, 38
loading methods, 49–50

380 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

LOCAL_, prefix, 127, 130, 131
LOCAL_MODULE variable, 131
LOCAL_MODULE_PATH variable, 131, 185
LOCAL_MODULE_TAGS variable, 131
LOCAL_PACKAGE_NAME variable, 131
LOCAL_PATH variable, 131
LOCAL_PRELINK_MODULE variable, 151
LOCAL_SHARED_LIBRARIES variable, 131
LOCAL_SHARED_LIBRARIES, variable, 151
LOCAL_SRC_FILES variable, 131
Log class, 43
logcat command, 45, 199, 221–223
logging

about, 42–45
Android framework for, 43
using Toolbox, 216

logs, adb, dumping, 197–199
logwrapper command, 226
Love, Robert, Linux Kernel Development, 3rd

ed., 35
low-memory killer, 37–38
Low-Voltage Differential Signaling (LVDS), 159
lunch command, 120, 122–124
LVDS (Low-Voltage Differential Signaling), 159

M
m and mm commands, 120
Mac OS X Lion, building Gingerbread on, 98
Mac OS, building SDK for, 135–136
MAIN, 227, 301
MAIN HEADING, 266–268
main() method, 75, 252
make

clean, 127
recipes, 125–127

makefile, for building out of tree, 140–142
man dlopen, 327
man page, sh’s, 209–210
manifest file, 29

repo’s “manifest” file and, 81
marketing apps, 15
Markoff, John, “I Robot: The Man Behind the

Google Phone”, 1
McFadden, Andrew, response to post “Android

Simulator Environment”, 117
Media Service, 64
mediaserver, 256
memory layout and mapping, hardware compo‐

nents for, 165–169

Memory Management Unit (MMU), 167
menuconfig kernel style, 112
methods, loading and interfacing, 49–50
Microsoft, mobile patent issues, 17
Miller, Peter “Recursive Make Considered

Harmful”, 113
MirBSD Korn Shell, 210
mmap(), 47, 167
MMU (Memory Management Unit), 167
Mobile Network Operator (MNO), 157
mobile patent issues, 16–17
module

build templates, 127–132
build templates list, 128–129
building single, 139–140
definition of, 112

monkey, 288–290
MTD layer, Linux, 178

N
NAND flash

embedded systems equipped with, 158
vs. eMMC, 178

nandread utility, Toolbox, 218
Native Development Kit (NDK), 32, 127, 137
native library, adding, 151–152
native tool, adding, 150
native user-space

adb (see adb (Android debug bridge))
Android command line tools, 208–228
filesystem, 175–190
init

about, 228
boot logo, 245–247
global properties, 238–243
theory of operation, 228–230
ueventd, 243–245

native-user space
about, 52–60

NDK (Native Development Kit), 32, 127, 137
NetBSD sh utility, 209
netcfg utility, 223
netd, 301
newfs_msdos command, Toolbox, 218
NFC app, 257
non-Linux systems, building Android on, 98
NOR flash

embedded systems equipped with, 158
vs. eMMC, 178

Index | 381

www.it-ebooks.info

http://www.it-ebooks.info/

notify command, Toolbox, 219

O
obj/ directories, 132
OHA (Open Handset Alliance), 2, 8
On the Go (OTG) connector, 159
onCreate() callback, 330
OOM (Out-of-Memory)

adjustments, 58
killing mechanism, 29, 37, 38

Open Binder project, 39
open source projects (classic) vs. Android devel‐

opment model, 5–7
open source software movement, xii
open() function, 327
OpenBinder Documentation, 39
OpenGL ES, 3
OpenJDK, 92, 94
OPERSYSHW_HARDWARE_MODULE_ID

type of hardware, 327, 330
OpersysService class, 325
Oracle

dispute with Canonical, 92
Oracle vs. Google, 15–16
OS X Lion, building Gingerbread on, 98
OTG (On the Go) connector, 159
Out-of-Memory (OOM)

adjustments, 58
killing mechanism, 29, 37, 38

output, build, 132–134
OUT_DIR variable, 116
overlays, adding app, 149–150

P
Package Manager Service, 252, 260–262, 282,

298
packages

trimming, 338–339
packages, AOSP, 71–73
PacketVideo’s OpenCore framework, 3
Page, Larry, 1
PandaBoard, 103, 160
paranoid networking, 45
PCB (Printed Circuit Board), address bus on,

165
performance compatibility requirements, 21
permission system, circumventing, 278
permissions and security, 30–31

persistent apps, 264
persistent flag, enabling, 334
physical memory (pmem) driver, 45
physical memory vs. virtual memory, 165–167
PID (Process Identifier), 77
pm command, 282–285
PMIC (Power Management IC), 159
port 80, connecting Android device using

browser to, 314–317
port forwarding, adb, 200–202
POSIX SHM vs. Ashmem, 40
Power Management IC (PMIC), 159
PPP connection, using adb for, 207
prebuilt directory, 87
Printed Circuit Board (PCB), address bus on,

165
printk(), 42
Process Identifier (PID), 77
processes and threads, 29
PRODUCT_BRAND variable, 145
PRODUCT_COPY_FILES variable, 145, 186
PRODUCT_DEVICE variable, 118, 145
PRODUCT_MODEL variable, 145
PRODUCT_NAME variable, 145
PRODUCT_PACKAGES variable, 144–145,

149, 150
PRODUCT_PACKAGES, assembling, 338
ps command, Toolbox vs. Busybox, 319–321
Pundir, Amit, 140–142
push functionality, 202–203

Q
QEMU-based emulator, 31, 96, 107

(see also emulator)
Queru, Jean-Baptiste, 92, 94

R
RAM

console, 45
controller in SoC, 164
location in physical address, 167

rawbu, 276–277
.rc files, init

about, 230, 236–238
default

2.3/Gingerbread, 341–351
4.2/Jelly Bean, 351–364

read() function, 327, 330

382 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

read_native(), 325–326
Real-Time Clock (RTC), 41, 159
Real-Time OS (RTOS), 157
real-world interaction, in system architecture,

159
reboot command, adb, 204
“Recursive Make Considered Harmful” (Miller),

113
registerService(), 333
ReleaseByteArrayElements(), 326
Remote Procedure Calls (RPCs), 30
remount, 202
repo tool, 80–84
Repo, the Android Source Management Tools

(blog post), 81
RF transceiver, connection to BP, 157
RIL implementations, 51–52
RIL libraries, 303
RIL, Android, 157
rild, 302–303
root access to devices, 102
root command, adb, 204–206
root directory, 179–180
root filesystem layout, 53–54, 175–176
rootfs-glibc directory, using, 311
Rosenkränzer, Bernhard

building AOSP with OpenJDK, 94
building recursively, in-tree, 142

RPCs (Remote Procedure Calls) mechanism,
IPC/, 30

RTC (Real-Time Clock), 41, 159
RTOS (Real-Time OS), 157
Rubin, Andy, 1, 5
Runtime, Android, 251–253

S
Safari Books Online, xvii
Samba Project, 123
Samsung, mobile patent issues, 17
SD card, appearance in filesystem, 178
/sdcard directory, 185
SDK (Software Development Kit), Android

accessing, 31
building for Linux, 135–136
building for Mac OS, 135–136
building for Windows, 136

SDR (Software Defined Radio) devices, 157
security and permissions, 30–31
security model compatibility requirements, 21

sendmail daemon, 314
serial (RS-232), 160
Service Manager, Binder interaction and, 68–70
service-specific utilities, 278–292

am, 279–282
bmgr, 290–292
ime command, 286–287
input command, 287–288
monkey, 288–290
pm, 282–285
stagefright command, 292
svc, 285–286

servicemanager, as building block of frame‐
work, 251

services
controlling, 215–216

services, as Android component, 27
vs.System Server, 40

setconsole command, Toolbox, 220
setitimer(), 41
setProperty(), 252
shared memory, as IPC mechanism, 40
shell

adb, 197, 204
init and, 238
MirBSD Korn, 210
running from Toolbox, 211–220
sh’s man page, 209–210

show commands target, adding, 134
Sidekick phone, 1
SIM card, connection to BP, 157
simulator, 117, 121
single module, building, 139
sleep(), 303
Slog class, 43
smd command, Toolbox, 220
Sockets method, 50, 51–52
SoCs (System-on-Chips)

about, 161–165
connection to PMIC, 159
in system architecture, 155–156, 160
vendors for, 304–305

software compatibility testing requirements, 21
Software Defined Radio (SDR) devices, 157
Software Development Kit (SDK), Android

building for Linux, 135–136
building for Mac OS, 135–136
building for Windows, 136

SQLite database, 3

Index | 383

www.it-ebooks.info

http://www.it-ebooks.info/

StageFright
GStreamer replacing, 4
support for media formats through, 3

stagefright command, 292
staging tree, Linux

Android and, 38
Binder driver merged into, 40

startActivity() method, 70
startViaZygote() method, 70
start_kernel() function, 74
state-altering adb commands, 204–207
storage, component in SoC, 164
Sun Java Virtual Machine (VM)

about, 3
building Android on, 98

Sun Microsystems, acquisiton by Oracle, 15–16
Surface Flinger

as first system service, 254
reliance on ashmem, 40

svc command, 285–286
Swetland, Brian, 11, 178
switch-case, 58
switching connection type, adb, 205–206
Sysfs entries method, 50
syslog, 43
system architecture, 155–160
/system directory, 53, 134, 180–182
System Server

about, 64
in framework, 254–257
Java code in, 68
system services running within, 323
vs. services running in services component,

27, 40
system services

about, 63–70
calling, 330–333
implementing new, 324–327
in framework, 254–257
starting, 333–334
to support hardware types, 323

system startup, 73–77
System V IPC mechanisms

ashmem code and, 40
available in glibc, 310

System-on-Chips (SoCs)
about, 161–165
connection to PMIC, 159
in system architecture, 155–156, 160

vendors for, 304–305
System.getProperty(), 252
System.setProperty(), 252
/system/bin/system_server, 255
SystemClock class, 41

T
TARGET_ARCH_VARIANT variable, 118
TARGET_BUILD_TYPE variable, 116
TARGET_BUILD_VARIANT variable, 116, 205
TARGET_DEVICE variable, 118
TARGET_PRODUCT variable, 115–116, 118
TARGET_SHELL variable, 211
TARGET_TOOLS_PREFIX variable, 116
telephony support

about, 158
GSM, 3

telnet, using emulator console to connect to, 206
templates, module build, 127–132
testing apps on devices, websites for, 31
threads and processes, 29
Toolbox

about, 58
commands in Jelly Bean, 316–317
running shell from, 211–220
vs. Busybox, 58, 319–321

Torvalds, Linus, 11, 35
tree

building out of, 140–142
building recursively in-, 142–143

U
Ubuntu 10.04, 64-bit, as Google supported build

environment, 22
udev events, 58, 79
ueventd, 243–245
UI/Application Exerciser Monkey (website), 288
UID (Unique Identifier), 30
Unix domain sockets, 223, 303
URIs (Universal Resource Identifiers), access

enforcement using, 31
USB

connecting to target, 169–170
controller in SoC, 164
host, 160

User Interface (UI), 30
user-facing system, Android as, 159
user-space environment, native, 52–60

384 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

Userspace low memory killer daemon, 38
USE_CCACHE variable, 123
Using the Android Emulator (posting), 193
utilities and commands

command line, 219–228
framework, 266–297

am command, 279–282
bmgr, 290–292
Dalvik Utilities, 293–297
dumpstate, 270–276
dumpsys, 268–270
ime command, 286–287
input command, 287–288
monkey, 288–290
pm command, 282–285
rawbu, 276–277
service, 266–268
stagefright command, 292
svc command, 285–286

V
vet default properties, 148
vi command, 314
virtual filesystems, 178
virtual machine, 61–62
“Virtual Machine Showdown” (Shi et al.), 62
virtual machines, 98

(see also Dalvik Virtual Machine)
building Android on, 98

virtual memory vs. physical memory, 165–167
VM (Sun Java Virtual Machine)

about, 3
building Android on, 98

vold, 299–301, 302

W
WakeLock mechanism, 35–37, 68
web browsers

connecting to port 80 on Android device us‐
ing, 314–317

WebKit-based, 3
WebKit-based browser, 3
WebView class, using WebKit engine, 3
Welte, Harald, “Anatomy of contemporary GSM

cellphone hardware”, 158
WiFi, support for, 3
Windows, building SDK for, 136
wipe command, Toolbox, 217
wireless connection technologies, support for, 3
wireless radio technologies, 158
write() function, 327, 330

X
X Window System, 47

Y
YAFFS2-formatted NAND flash partitions, 177
Yaghmour, Karim, Building Embedded Linux

Systems, xii, 96, 140, 309
Yocto, 308, 322

Z
ZIP files, uncompressed, 259
Zores, Benjamin, 161
Zygote daemon, 74–77, 251–254

Index | 385

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author
Karim J. Yaghmour is part serial entrepreneur, part unrepentant geek. He is the CEO
of Opersys Inc., a company providing development and training services on embedded
Android and embedded Linux, and is most widely known for having authored O’Reilly’s
Building Embedded Linux Systems—which sold tens of thousands of copies worldwide
and has been translated into several different languages.

Karim pioneered in the world of Linux tracing by introducing the Linux Trace Toolkit
(LTT) in the late ’90s. He continued maintaining LTT through 2005 and was joined in
this effort by developers from several companies, including IBM, HP, and Intel. LTT
users have included Google, IBM, HP, Oracle, Alcatel, Nortel, Ericsson, Qualcomm,
NASA, Boeing, Airbus, Sony, Samsung, NEC, Fujitsu, SGI, RedHat, Thales, Oerlikon,
Bull, Motorola, ARM, and ST Micro. Other contributions include relayfs and Adeos.

Karim has presented and published with a number of peer-reviewed scientific and in‐
dustry conferences, magazines, and online publications—including Usenix, the Linux
Kernel Summit, the Embedded Linux Conference, the Android Builders Summit, An‐
DevCon, the Embedded Systems Conference, the Ottawa Linux Symposium, Linux
Journal, the O’Reilly Network, and the Real-Time Linux Workshop.

Colophon
The animal on the cover of Embedded Android is a Moorish wall gecko (Tarentola
mauritanica), which is a species of gecko native to the Western Mediterranean region
of Europe and North Africa and also found in North America and Asia. It is commonly
observed on walls in urban environments, mainly in warm coastal areas, though it can
spread inland, especially in Spain. The adoption of this species as a pet has led to pop‐
ulations becoming established in Florida and elsewhere.

The Moorish wall gecko is mainly nocturnal or crepuscular, but it is also active during
the day, especially on sunny days at the end of the winter. It lays two almost-spherical
eggs twice a year around April and June. After 4 months, little salamanquesas of less
than 5 centimeters in length are born. They are slow to mature, taking 4 to 5 years in
captivity.

Adults can measure up to 15 centimeters, including the tail. They have a robust body
and flat head and their tubercules are enlarged, which give the species a spiny, armored
appearance. They are brownish gray or brown with darker or lighter spots; these colors
change in intensity according to the light.

The cover image is from Heck’s Nature & Science. The cover font is Adobe ITC Gara‐
mond. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed;
and the code font is Dalton Maag’s Ubuntu Mono.

www.it-ebooks.info

http://www.it-ebooks.info/

	Copyright
	Table of Contents
	Preface
	Learning How to Embed Android
	Audience for This Book
	Organization of the Material
	Software Versions
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	History
	Features and Characteristics
	Development Model
	Differences From “Classic” Open Source Projects
	Feature Inclusion, Roadmaps, and New Releases

	Ecosystem
	A Word on the Open Handset Alliance

	Getting “Android”
	Legal Framework
	Code Licenses
	Branding Use
	Google’s Own Android Apps
	Alternative App Markets
	Oracle versus Google
	Mobile Patent Warfare

	Hardware and Compliance Requirements
	Compliance Definition Document
	Compliance Test Suite

	Development Setup and Tools

	Chapter 2. Internals Primer
	App Developer’s View
	Android Concepts
	Framework Intro
	App Development Tools
	Native Development

	Overall Architecture
	Linux Kernel
	Wakelocks
	Low-Memory Killer
	Binder
	Anonymous Shared Memory (ashmem)
	Alarm
	Logger
	Other Notable Androidisms

	Hardware Support
	The Linux Approach
	Android’s General Approach
	Loading and Interfacing Methods
	Device Support Details

	Native User-Space
	Filesystem Layout
	Libraries
	Init
	Toolbox
	Daemons
	Command-Line Utilities

	Dalvik and Android’s Java
	Java Native Interface (JNI)

	System Services
	Service Manager and Binder Interaction
	Calling on Services
	A Service Example: the Activity Manager

	Stock AOSP Packages
	System Startup

	Chapter 3. AOSP Jump-Start
	Development Host Setup
	Getting the AOSP
	Inside the AOSP
	Build Basics
	Build System Setup
	Building Android

	Running Android
	Using the Android Debug Bridge (ADB)
	Mastering the Emulator

	Chapter 4. The Build System
	Comparison with Other Build Systems
	Architecture
	Configuration
	envsetup.sh
	Function Definitions
	Main Make Recipes
	Cleaning
	Module Build Templates
	Output

	Build Recipes
	The Default droid Build
	Seeing the Build Commands
	Building the SDK for Linux and Mac OS
	Building the SDK for Windows
	Building the CTS
	Building the NDK
	Updating the API
	Building a Single Module
	Building Out of Tree
	Building Recursively, In-Tree

	Basic AOSP Hacks
	Adding a Device
	Adding an App
	Adding an App Overlay
	Adding a Native Tool or Daemon
	Adding a Native Library

	Chapter 5. Hardware Primer
	Typical System Architecture
	The Baseband Processor
	Core Components
	Real-World Interaction
	Connectivity
	Expansion, Development, and Debugging

	What’s in a System-on-Chip (SoC)?
	Memory Layout and Mapping
	Development Setup
	Evaluation Boards

	Chapter 6. Native User-Space
	Filesystem
	The Root Directory
	/system
	/data
	SD Card
	The Build System and the Filesystem

	adb
	Theory of Operation
	Main Flags, Parameters, and Environment Variables
	Basic Local Commands
	Device Connection and Status
	Basic Remote Commands
	Filesystem Commands
	State-Altering Commands
	Tunneling PPP

	Android’s Command Line
	The Shell Up to 2.3/Gingerbread
	The Shell Since 4.0/Ice-Cream Sandwich
	Toolbox
	Core Native Utilities and Daemons
	Extra Native Utilities and Daemons
	Framework Utilities and Daemons

	Init
	Theory of Operation
	Configuration Files
	Global Properties
	ueventd
	Boot Logo

	Chapter 7. Android Framework
	Kick-Starting the Framework
	Core Building Blocks
	System Services
	Boot Animation
	Dex Optimization
	Apps Startup

	Utilities and Commands
	General-Purpose Utilities
	Service-Specific Utilities
	Dalvik Utilities

	Support Daemons
	installd
	vold
	netd
	rild
	keystore
	Other Support Daemons

	Hardware Abstraction Layer

	Appendix A. Legacy User-Space
	Basics
	Theory of Operation
	Merging with the AOSP
	Using the Combined Stacks
	Caveats and Pending Issues
	Moving Forward

	Appendix B. Adding Support for New Hardware
	The Basics
	The System Service
	The HAL and Its Extension
	The HAL Module
	Calling the System Service
	Starting the System Service
	Caveats and Recommendations

	Appendix C. Customizing the Default Lists of Packages
	Overall Dependencies
	Assembling the Final PRODUCT_PACKAGES
	Trimming Packages

	Appendix D. Default init.rc Files
	2.3/Gingerbread’s default init.rc
	4.2/Jelly Bean’s Default init Files
	init.rc
	init.usb.rc
	init.trace.rc

	Appendix E. Resources
	Websites and Communities
	Google
	SoC Vendors
	Forks
	Documentation and Forums
	Embedded Linux Build Tools
	Open Hardware Projects

	Books
	Conferences and Events

	Index
	About the Author

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

